Riemannian Dictionary Learning and Sparse Coding for Positive Definite Matrices

Data encoded as symmetric positive definite (SPD) matrices frequently arise in many areas of computer vision and machine learning. While these matrices form an open subset of the Euclidean space of symmetric matrices, viewing them through the lens of non-Euclidean Riemannian (Riem) geometry often tu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 28; no. 12; pp. 2859 - 2871
Main Authors Cherian, Anoop, Sra, Suvrit
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Data encoded as symmetric positive definite (SPD) matrices frequently arise in many areas of computer vision and machine learning. While these matrices form an open subset of the Euclidean space of symmetric matrices, viewing them through the lens of non-Euclidean Riemannian (Riem) geometry often turns out to be better suited in capturing several desirable data properties. Inspired by the great success of dictionary learning and sparse coding (DLSC) for vector-valued data, our goal in this paper is to represent data in the form of SPD matrices as sparse conic combinations of SPD atoms from a learned dictionary via a Riem geometric approach. To that end, we formulate a novel Riem optimization objective for DLSC, in which the representation loss is characterized via the affine-invariant Riem metric. We also present a computationally simple algorithm for optimizing our model. Experiments on several computer vision data sets demonstrate superior classification and retrieval performance using our approach when compared with SC via alternative non-Riem formulations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2016.2601307