Robust Scatterer Number Density Segmentation of Ultrasound Images

Quantitative ultrasound (QUS) aims to reveal information about the tissue microstructure using backscattered echo signals from clinical scanners. Among different QUS parameters, scatterer number density is an important property that can affect the estimation of other QUS parameters. Scatterer number...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 69; no. 4; pp. 1169 - 1180
Main Authors Tehrani, Ali K. Z., Rosado-Mendez, Ivan M., Rivaz, Hassan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Quantitative ultrasound (QUS) aims to reveal information about the tissue microstructure using backscattered echo signals from clinical scanners. Among different QUS parameters, scatterer number density is an important property that can affect the estimation of other QUS parameters. Scatterer number density can be classified into high or low scatterer densities. If there are more than ten scatterers inside the resolution cell, the envelope data are considered as fully developed speckle (FDS) and, otherwise, as underdeveloped speckle (UDS). In conventional methods, the envelope data are divided into small overlapping windows (a strategy here we refer to as patching), and statistical parameters, such as SNR and skewness, are employed to classify each patch of envelope data. However, these parameters are system-dependent, meaning that their distribution can change by the imaging settings and patch size. Therefore, reference phantoms that have known scatterer number density are imaged with the same imaging settings to mitigate system dependency. In this article, we aim to segment regions of ultrasound data without any patching. A large dataset is generated, which has different shapes of scatterer number density and mean scatterer amplitude using a fast simulation method. We employ a convolutional neural network (CNN) for the segmentation task and investigate the effect of domain shift when the network is tested on different datasets with different imaging settings. Nakagami parametric image is employed for multitask learning to improve performance. Furthermore, inspired by the reference phantom methods in QUS, a domain adaptation stage is proposed, which requires only two frames of data from FDS and UDS classes. We evaluate our method for different experimental phantoms and in vivo data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0885-3010
1525-8955
1525-8955
DOI:10.1109/TUFFC.2022.3144685