Contactless Biometric Identification Using 3D Finger Knuckle Patterns

Study on finger knuckle patterns has attracted increasing attention for the automated biometric identification. However, finger knuckle pattern is essentially a 3D biometric identifier and the usage or availability of only 2D finger knuckle databases in the literature is the key limitation to avail...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 42; no. 8; pp. 1868 - 1883
Main Authors Cheng, Kevin H. M., Kumar, Ajay
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Study on finger knuckle patterns has attracted increasing attention for the automated biometric identification. However, finger knuckle pattern is essentially a 3D biometric identifier and the usage or availability of only 2D finger knuckle databases in the literature is the key limitation to avail full potential from this biometric identifier. This paper therefore introduces (first) contactless 3D finger knuckle database in public domain, which is acquired from 130 different subjects in two-session imaging using photometric stereo approach. This paper investigates on the 3D information from the finger knuckle patterns and introduces a new feature descriptor to extract discriminative 3D features for more accurate 3D finger knuckle matching. An individuality model for the proposed feature descriptor is also presented. Comparative experimental results using the state-of-the-art feature extraction methods on this challenging 3D finger knuckle database validate the effectiveness of our approach. Although our feature descriptor is designed for 3D finger knuckle patterns, it is also attractive for other hand-based biometric identifiers with similar patterns such as the palmprint and fingerprint. This observation is validated from the outperforming results, using the state-of-the-art pixel-wise 3D palmprint and 3D fingerprint feature descriptors, on other publicly available datasets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
1939-3539
DOI:10.1109/TPAMI.2019.2904232