Neuroadaptive Control With Given Performance Specifications for MIMO Strict-Feedback Systems Under Nonsmooth Actuation and Output Constraints
This paper studies the prescribed performance tracking control problem for a class of multi-input multi-output strict-feedback systems with asymmetric nonsmooth actuator characteristics and output constraints as well as unexpected external disturbances. By combining a novel speed transformation with...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 29; no. 9; pp. 4414 - 4425 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper studies the prescribed performance tracking control problem for a class of multi-input multi-output strict-feedback systems with asymmetric nonsmooth actuator characteristics and output constraints as well as unexpected external disturbances. By combining a novel speed transformation with barrier Lyapunov function, a neural adaptive control scheme is developed that is able to achieve given tracking precision within preassigned finite time at prespecified converging mode. At each of the first n - 1 steps of backstepping design, we make use of the radial basis function neural networks to cope with the uncertainties arising from unknown and time-varying virtual control gains, and in the last step, we introduce a matrix factorization technique to remove the restrictive requirement on the unknown control gain matrix and its NN-approximation, simplifying control design. Furthermore, to reduce the number of parameters to be online updated, we introduce a virtual parameter to handle the lumped uncertainties, resulting in a control scheme with low complexity and inexpensive computations. The effectiveness of the proposed control strategy is validated by systematic stability analysis and numerical simulation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2017.2766123 |