Finite-Time Consensus Tracking Neural Network FTC of Multi-Agent Systems

The finite-time consensus fault-tolerant control (FTC) tracking problem is studied for the nonlinear multi-agent systems (MASs) in the nonstrict feedback form. The MASs are subject to unknown symmetric output dead zones, actuator bias and gain faults, and unknown control coefficients. According to t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 2; pp. 653 - 662
Main Authors Dong, Guowei, Li, Hongyi, Ma, Hui, Lu, Renquan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The finite-time consensus fault-tolerant control (FTC) tracking problem is studied for the nonlinear multi-agent systems (MASs) in the nonstrict feedback form. The MASs are subject to unknown symmetric output dead zones, actuator bias and gain faults, and unknown control coefficients. According to the properties of the neural network (NN), the unstructured uncertainties problem is solved. The Nussbaum function is used to address the output dead zones and unknown control directions problems. By introducing an arbitrarily small positive number, the "singularity" problem caused by combining the finite-time control and backstepping design is solved. According to the backstepping design and Lyapunov stability theory, a finite-time adaptive NN FTC controller is obtained, which guarantees that the tracking error converges to a small neighborhood of zero in a finite time, and all signals in the closed-loop system are bounded. Finally, the effectiveness of the proposed method is illustrated via a physical example.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2020.2978898