Adaptive Set-Membership State Estimation for Nonlinear Systems Under Bit Rate Allocation Mechanism: A Neural-Network-Based Approach

In this article, the adaptive neural-network-based (NN-based) set-membership state estimation problem is studied for a class of nonlinear systems subject to bit rate constraints and unknown-but-bounded noises. The measurement output signals are transmitted from sensors to a remote estimator via a bi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 11; pp. 8337 - 8348
Main Authors Zhu, Kaiqun, Wang, Zidong, Wei, Guoliang, Liu, Xiaohui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, the adaptive neural-network-based (NN-based) set-membership state estimation problem is studied for a class of nonlinear systems subject to bit rate constraints and unknown-but-bounded noises. The measurement output signals are transmitted from sensors to a remote estimator via a bit rate constrained communication channel. To relieve the communication burden and ameliorate the state estimation accuracy, a bit rate allocation mechanism is put forward for the sensor nodes by solving a constrained optimization problem. Subsequently, through the NN learning method, an NN-based set-membership estimator is designed to determine an ellipsoidal set that contains the system state, where the proposed estimator relies upon a prediction-correction structure. With the help of the mathematical induction technique and the set theory, sufficient conditions are obtained to ensure the existence of both the adaptive tuning parameters and the set-membership estimators, and then, the corresponding parameters and estimator gains are calculated by solving a set of optimization problems. In addition, the monotonicity of the upper bound on the squared estimation error with respect to the bit rate and the convergence of the NN weight are analyzed, respectively. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed state estimation algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2022.3149540