An EMG-Driven Musculoskeletal Model for Estimating Continuous Wrist Motion

EMG-based continuous wrist joint motion estimation has been identified as a promising technique with huge potential in assistive robots. Conventional data-driven model-free methods tend to establish the relationship between the EMG signal and wrist motion using machine learning or deep learning tech...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 12; pp. 3113 - 3120
Main Authors Zhao, Yihui, Zhang, Zhiqiang, Li, Zhenhong, Yang, Zhixin, Dehghani-Sanij, Abbas A., Xie, Shengquan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:EMG-based continuous wrist joint motion estimation has been identified as a promising technique with huge potential in assistive robots. Conventional data-driven model-free methods tend to establish the relationship between the EMG signal and wrist motion using machine learning or deep learning techniques, but cannot interpret the functional relationship between neuro-commands and relevant joint motion. In this paper, an EMG-driven musculoskeletal model is proposed to estimate continuous wrist joint motion. This model interprets the muscle activation levels from EMG signals. A muscle-tendon model is developed to compute the muscle force during the voluntary flexion/extension movement, and a joint kinematic model is established to estimate the continuous wrist motion. To optimize the subject-specific physiological parameters, a genetic algorithm is designed to minimize the differences of joint motion prediction from the musculoskeletal model and joint motion measurement using motion data during training. Results show that mean root-mean-square-errors are 10.08°, 10.33°, 13.22° and 17.59° for single flexion/extension, continuous cycle and random motion trials, respectively. The mean coefficient of determination is over 0.9 for all the motion trials. The proposed EMG-driven model provides an accurate tracking performance based on user's intention.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2020.3038051