Routing, Spectrum, and core and/or mode assignment on space-division multiplexing optical networks [invited]

Elastic optical networks (EONs) are considered to be one of the promising future networks for spectrum flexibility. In conventional wavelength-division multiplexing networks, routing and wavelength assignment is one of the key issues, whereas the routing and spectrum assignment (RSA) problem conside...

Full description

Saved in:
Bibliographic Details
Published inJournal of optical communications and networking Vol. 9; no. 1; pp. A99 - A113
Main Authors Tode, Hideki, Hirota, Yusuke
Format Journal Article
LanguageEnglish
Published Piscataway Optica Publishing Group 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1943-0620
1943-0639
DOI10.1364/JOCN.9.000A99

Cover

Loading…
More Information
Summary:Elastic optical networks (EONs) are considered to be one of the promising future networks for spectrum flexibility. In conventional wavelength-division multiplexing networks, routing and wavelength assignment is one of the key issues, whereas the routing and spectrum assignment (RSA) problem considerably affects the network performance in EONs. In addition, the data-center traffic and mobile back-haul traffic keeps increasing. To deal with such increasing capacity of applications, spacedivision multiplexing (SDM) technologies such as multicore fiber (MCF) and multi-mode fiber (MMF) have been intensively researched. From the network perspective, this paper focuses on the routing, spectrum, and core and/or mode assignment (RSCMA) problem for future SDMEONs. Introducing MCF or MMF further complicates the RSA problem because the fiber core or mode dimension is newly expanded. In addition, physical impairment caused by MCF or MMF must be considered. In this paper, the target RSCMA problem is first divided into routing and SCMA problems, and a pre-computation method based on the K-shortest path is introduced as the routing solution. Next, we propose SCMA methods with efficiency and flexibility awareness, exploiting prioritized area concept and crosstalk awareness depending on whether MCF or MMF supports intercore/intermode crosstalk. Finally, the paper evaluates and compares the effectiveness of the proposed algorithms with that of representative algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1943-0620
1943-0639
DOI:10.1364/JOCN.9.000A99