A Deep Framework for Hyperspectral Image Fusion Between Different Satellites
Recently, fusing a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) of different satellites has become an effective way to improve the resolution of an HSI. However, due to different imaging satellites, different illumination, and adjacent imaging time,...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 7; pp. 7939 - 7954 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Recently, fusing a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) of different satellites has become an effective way to improve the resolution of an HSI. However, due to different imaging satellites, different illumination, and adjacent imaging time, the LR-HSI and HR-MSI may not satisfy the observation models established by existing works, and the LR-HSI and HR-MSI are hard to be registered. To solve the above problems, we establish new observation models for LR-HSIs and HR-MSIs from different satellites, then a deep-learning-based framework is proposed to solve the key steps in multi-satellite HSI fusion, including image registration, blur kernel learning, and image fusion. Specifically, we first construct a convolutional neural network (CNN), called RegNet, to produce pixel-wise offsets between LR-HSI and HR-MSI, which are utilized to register the LR-HSI. Next, according to the new observation models, a tiny network, called BKLNet, is built to learn the spectral and spatial blur kernels, where the BKLNet and RegNet can be trained jointly. In the fusion part, we further train a FusNet by downsampling the registered data with the learned spatial blur kernel. Extensive experiments demonstrate the superiority of the proposed framework in HSI registration and fusion accuracy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0162-8828 1939-3539 2160-9292 |
DOI: | 10.1109/TPAMI.2022.3229433 |