Visualizing the evolution of surface morphology and surface bond strain during plasma deposition of amorphous silicon thin films

Fundamental understanding of atomic-scale processes that determine the surface morphology of hydrogenated amorphous silicon (a-Si:H) thin films during plasma deposition is essential to develop systematic strategies for depositing smooth device-quality a-Si:H films. We have developed visualization to...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on plasma science Vol. 33; no. 2; pp. 228 - 229
Main Authors Valipa, M.S., Aydil, E.S., Maroudas, D.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fundamental understanding of atomic-scale processes that determine the surface morphology of hydrogenated amorphous silicon (a-Si:H) thin films during plasma deposition is essential to develop systematic strategies for depositing smooth device-quality a-Si:H films. We have developed visualization tools for monitoring the evolution of surface morphology, atomic coordination, and bond strain distribution during radical precursor migration on a-Si:H surfaces; these tools are used here to study the mechanisms of SiH/sub 3/ diffusion on the a-Si:H surface and elucidate valley-filling phenomena leading to smooth a-Si:H films. We present surface characterization results during a radical migration trajectory representative of the early stage of plasma deposition: the SiH/sub 3/ precursor is impinged on a hill and migrates until it is incorporated into a nearby valley on the a-Si:H surface.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2005.845000