Visualizing the evolution of surface morphology and surface bond strain during plasma deposition of amorphous silicon thin films
Fundamental understanding of atomic-scale processes that determine the surface morphology of hydrogenated amorphous silicon (a-Si:H) thin films during plasma deposition is essential to develop systematic strategies for depositing smooth device-quality a-Si:H films. We have developed visualization to...
Saved in:
Published in | IEEE transactions on plasma science Vol. 33; no. 2; pp. 228 - 229 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fundamental understanding of atomic-scale processes that determine the surface morphology of hydrogenated amorphous silicon (a-Si:H) thin films during plasma deposition is essential to develop systematic strategies for depositing smooth device-quality a-Si:H films. We have developed visualization tools for monitoring the evolution of surface morphology, atomic coordination, and bond strain distribution during radical precursor migration on a-Si:H surfaces; these tools are used here to study the mechanisms of SiH/sub 3/ diffusion on the a-Si:H surface and elucidate valley-filling phenomena leading to smooth a-Si:H films. We present surface characterization results during a radical migration trajectory representative of the early stage of plasma deposition: the SiH/sub 3/ precursor is impinged on a hill and migrates until it is incorporated into a nearby valley on the a-Si:H surface. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2005.845000 |