BlockQNN: Efficient Block-Wise Neural Network Architecture Generation
Convolutional neural networks have gained a remarkable success in computer vision. However, most popular network architectures are hand-crafted and usually require expertise and elaborate design. In this paper, we provide a block-wise network generation pipeline called BlockQNN which automatically b...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 43; no. 7; pp. 2314 - 2328 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Convolutional neural networks have gained a remarkable success in computer vision. However, most popular network architectures are hand-crafted and usually require expertise and elaborate design. In this paper, we provide a block-wise network generation pipeline called BlockQNN which automatically builds high-performance networks using the Q-Learning paradigm with epsilon-greedy exploration strategy. The optimal network block is constructed by the learning agent which is trained to choose component layers sequentially. We stack the block to construct the whole auto-generated network. To accelerate the generation process, we also propose a distributed asynchronous framework and an early stop strategy. The block-wise generation brings unique advantages: (1) it yields state-of-the-art results in comparison to the hand-crafted networks on image classification, particularly, the best network generated by BlockQNN achieves 2.35 percent top-1 error rate on CIFAR-10. (2) it offers tremendous reduction of the search space in designing networks, spending only 3 days with 32 GPUs. A faster version can yield a comparable result with only 1 GPU in 20 hours. (3) it has strong generalizability in that the network built on CIFAR also performs well on the larger-scale dataset. The best network achieves very competitive accuracy of 82.0 percent top-1 and 96.0 percent top-5 on ImageNet. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0162-8828 1939-3539 2160-9292 1939-3539 |
DOI: | 10.1109/TPAMI.2020.2969193 |