Kinematic Control of Redundant Manipulators Using Neural Networks
Redundancy resolution is a critical problem in the control of robotic manipulators. Recurrent neural networks (RNNs), as inherently parallel processing models for time-sequence processing, are potentially applicable for the motion control of manipulators. However, the development of neural models fo...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 28; no. 10; pp. 2243 - 2254 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 |
DOI | 10.1109/TNNLS.2016.2574363 |
Cover
Loading…
Abstract | Redundancy resolution is a critical problem in the control of robotic manipulators. Recurrent neural networks (RNNs), as inherently parallel processing models for time-sequence processing, are potentially applicable for the motion control of manipulators. However, the development of neural models for high-accuracy and real-time control is a challenging problem. This paper identifies two limitations of the existing RNN solutions for manipulator control, i.e., position error accumulation and the convex restriction on the projection set, and overcomes them by proposing two modified neural network models. Our method allows nonconvex sets for projection operations, and control error does not accumulate over time in the presence of noise. Unlike most works in which RNNs are used to process time sequences, the proposed approach is model-based and training-free, which makes it possible to achieve fast tracking of reference signals with superior robustness and accuracy. Theoretical analysis reveals the global stability of a system under the control of the proposed neural networks. Simulation results confirm the effectiveness of the proposed control method in both the position regulation and tracking control of redundant PUMA 560 manipulators. |
---|---|
AbstractList | Redundancy resolution is a critical problem in the control of robotic manipulators. Recurrent neural networks (RNNs), as inherently parallel processing models for time-sequence processing, are potentially applicable for the motion control of manipulators. However, the development of neural models for high-accuracy and real-time control is a challenging problem. This paper identifies two limitations of the existing RNN solutions for manipulator control, i.e., position error accumulation and the convex restriction on the projection set, and overcomes them by proposing two modified neural network models. Our method allows nonconvex sets for projection operations, and control error does not accumulate over time in the presence of noise. Unlike most works in which RNNs are used to process time sequences, the proposed approach is model-based and training-free, which makes it possible to achieve fast tracking of reference signals with superior robustness and accuracy. Theoretical analysis reveals the global stability of a system under the control of the proposed neural networks. Simulation results confirm the effectiveness of the proposed control method in both the position regulation and tracking control of redundant PUMA 560 manipulators. |
Author | Yunong Zhang Shuai Li Long Jin |
Author_xml | – sequence: 1 givenname: Shuai orcidid: 0000-0001-8316-5289 surname: Li fullname: Li, Shuai – sequence: 2 givenname: Yunong surname: Zhang fullname: Zhang, Yunong – sequence: 3 givenname: Long surname: Jin fullname: Jin, Long |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27352398$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLAzEYRYNUtFb_gIIMuHHTmtckmaUUX1graAV3IZPJSHSa1GQG8d-b2tZFF2bzZXHOR3LvAeg57wwAxwiOEILFxWw6nTyPMERshHNOCSM7oI8Rw0NMhOj93fnrPjiK8R2mw2DOaLEH9jEnOSaF6IPLe-vMXLVWZ2Pv2uCbzNfZk6k6VynXZg_K2UXXqNaHmL1E696yqemCatJov3z4iIdgt1ZNNEfrOQAv11ez8e1w8nhzN76cDDXJUTssC0xQWValqpGGpCAEU80xpIpBgymBnEIDGYaKIaG1EogXmtVa6FLAylAyAOervYvgPzsTWzm3UZumUc74LkokMOMIopwl9GwLffddcOl1EiNOaQ7T7xN1uqa6cm4quQh2rsK33ISTALECdPAxBlNLbdsU1TInZRuJoFxWIX-rkMsq5LqKpOItdbP9X-lkJVljzJ_AaVEIhMkPLJ2SVw |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1007_s41315_024_00360_z crossref_primary_10_1109_ACCESS_2018_2865754 crossref_primary_10_3390_machines10040241 crossref_primary_10_1016_j_robot_2024_104811 crossref_primary_10_1109_TNNLS_2020_2963998 crossref_primary_10_1007_s11432_018_9588_0 crossref_primary_10_1007_s00521_022_08174_5 crossref_primary_10_1109_TII_2017_2737363 crossref_primary_10_1109_ACCESS_2019_2914077 crossref_primary_10_1109_TIM_2023_3265744 crossref_primary_10_1109_TCST_2018_2799990 crossref_primary_10_1002_adc2_63 crossref_primary_10_1007_s11063_019_10095_9 crossref_primary_10_1115_1_4048104 crossref_primary_10_1109_TIE_2021_3062257 crossref_primary_10_1177_09544062231182893 crossref_primary_10_1002_int_22304 crossref_primary_10_1016_j_neucom_2018_11_001 crossref_primary_10_1109_TSMC_2017_2784828 crossref_primary_10_1007_s00521_023_08621_x crossref_primary_10_1109_TII_2021_3099819 crossref_primary_10_3390_machines11100952 crossref_primary_10_1016_j_neucom_2021_11_025 crossref_primary_10_1109_ACCESS_2020_2990555 crossref_primary_10_1016_j_neucom_2018_10_054 crossref_primary_10_1109_TCYB_2018_2859751 crossref_primary_10_1109_TNNLS_2024_3351674 crossref_primary_10_1109_TSMC_2024_3390235 crossref_primary_10_1109_ACCESS_2020_2981688 crossref_primary_10_1109_TII_2018_2789438 crossref_primary_10_1109_TASE_2022_3186668 crossref_primary_10_1007_s00521_020_05617_9 crossref_primary_10_1080_10556788_2019_1594806 crossref_primary_10_1109_ACCESS_2020_2974248 crossref_primary_10_1109_TSMC_2017_2705160 crossref_primary_10_1007_s11063_019_09992_w crossref_primary_10_1016_j_neucom_2018_06_057 crossref_primary_10_1016_j_neucom_2021_09_047 crossref_primary_10_1007_s00521_019_04622_x crossref_primary_10_1109_TCDS_2022_3149622 crossref_primary_10_1109_TSMC_2017_2703140 crossref_primary_10_1109_TIE_2023_3273253 crossref_primary_10_1007_s40747_020_00178_9 crossref_primary_10_1177_09544062241305515 crossref_primary_10_1007_s00521_017_3060_2 crossref_primary_10_1109_TII_2022_3220873 crossref_primary_10_1109_TSMC_2022_3218788 crossref_primary_10_1109_TNNLS_2019_2944992 crossref_primary_10_3390_app132413240 crossref_primary_10_1088_1742_6596_1861_1_012092 crossref_primary_10_1109_TCSII_2023_3332262 crossref_primary_10_1109_TMECH_2021_3056409 crossref_primary_10_1109_TII_2023_3334305 crossref_primary_10_1109_TII_2017_2787729 crossref_primary_10_1109_TCST_2017_2756029 crossref_primary_10_1109_TNNLS_2024_3354080 crossref_primary_10_1109_TNNLS_2018_2884543 crossref_primary_10_1016_j_isatra_2023_03_042 crossref_primary_10_1007_s11063_019_10107_8 crossref_primary_10_1007_s41324_022_00500_2 crossref_primary_10_1109_TII_2019_2908442 crossref_primary_10_1109_TMECH_2022_3193136 crossref_primary_10_1109_TNNLS_2021_3109953 crossref_primary_10_1109_TNNLS_2022_3220806 crossref_primary_10_1109_TIE_2017_2774720 crossref_primary_10_1109_TNNLS_2023_3253801 crossref_primary_10_2139_ssrn_4185668 crossref_primary_10_1109_TMECH_2020_3001624 crossref_primary_10_1109_TNNLS_2020_2965553 crossref_primary_10_1109_ACCESS_2023_3315590 crossref_primary_10_1007_s00521_019_04690_z crossref_primary_10_1080_00207160_2021_1902512 crossref_primary_10_1016_j_neunet_2022_08_012 crossref_primary_10_1007_s42423_021_00081_6 crossref_primary_10_1016_j_mechmachtheory_2020_104006 crossref_primary_10_1115_1_4038492 crossref_primary_10_1016_j_conengprac_2024_106135 crossref_primary_10_1016_j_neucom_2019_04_069 crossref_primary_10_1109_ACCESS_2018_2878462 crossref_primary_10_1109_TCYB_2021_3111204 crossref_primary_10_1109_TSMC_2023_3288224 crossref_primary_10_3390_app122311908 crossref_primary_10_1007_s11432_020_3073_5 crossref_primary_10_1109_ACCESS_2023_3290046 crossref_primary_10_1109_TNNLS_2023_3307192 crossref_primary_10_1109_TASE_2020_3027394 crossref_primary_10_1109_ACCESS_2020_2986838 crossref_primary_10_1177_09596518241245148 crossref_primary_10_1109_TFUZZ_2021_3115969 crossref_primary_10_1109_TIE_2017_2674624 crossref_primary_10_1109_TII_2019_2900659 crossref_primary_10_1016_j_neucom_2018_07_067 crossref_primary_10_3390_act12030112 crossref_primary_10_1016_j_isatra_2023_12_020 crossref_primary_10_1109_ACCESS_2020_3009178 crossref_primary_10_1109_TSMC_2017_2690460 crossref_primary_10_1016_j_procs_2021_10_030 crossref_primary_10_1109_TSMC_2021_3129794 crossref_primary_10_1007_s11075_020_00946_1 crossref_primary_10_1109_TCYB_2018_2875134 crossref_primary_10_1109_TNNLS_2020_3028304 crossref_primary_10_1142_S0219843619500245 crossref_primary_10_1016_j_measurement_2020_107964 crossref_primary_10_1109_TII_2017_2766455 crossref_primary_10_1016_j_measurement_2020_108137 crossref_primary_10_1007_s12652_021_03342_2 crossref_primary_10_2139_ssrn_4133445 crossref_primary_10_1109_TIE_2021_3114674 crossref_primary_10_1093_jcde_qwad087 crossref_primary_10_1109_ACCESS_2019_2924478 crossref_primary_10_1109_TCSII_2020_3045427 crossref_primary_10_1109_ACCESS_2018_2887233 crossref_primary_10_1115_1_4039287 crossref_primary_10_1016_j_neucom_2018_07_058 crossref_primary_10_1007_s40997_023_00596_3 crossref_primary_10_1109_TII_2023_3242810 crossref_primary_10_1016_j_neucom_2018_04_023 crossref_primary_10_1109_TIE_2020_3007099 crossref_primary_10_1109_ACCESS_2020_2969497 crossref_primary_10_3390_app12199512 crossref_primary_10_1016_j_tcs_2019_07_027 crossref_primary_10_1109_TSMC_2017_2751259 crossref_primary_10_3390_robotics11020034 crossref_primary_10_1109_TNNLS_2019_2927249 crossref_primary_10_1109_TIE_2021_3082060 crossref_primary_10_1109_TIM_2024_3363783 crossref_primary_10_1109_TIE_2020_2970635 crossref_primary_10_1080_00207721_2022_2070790 crossref_primary_10_1016_j_eswa_2022_118735 crossref_primary_10_3390_e24081121 crossref_primary_10_1007_s40435_024_01533_1 crossref_primary_10_1109_TSMC_2019_2930646 crossref_primary_10_1109_ACCESS_2020_3043190 crossref_primary_10_1109_TNNLS_2022_3175595 crossref_primary_10_17694_bajece_459568 crossref_primary_10_1109_TII_2020_2996215 crossref_primary_10_1109_TNNLS_2019_2891252 crossref_primary_10_1016_j_neucom_2019_11_039 crossref_primary_10_1109_TII_2018_2869588 crossref_primary_10_1109_TII_2019_2899909 crossref_primary_10_1016_j_jfranklin_2022_10_044 crossref_primary_10_1109_TCST_2019_2963017 crossref_primary_10_1109_TETCI_2024_3369482 crossref_primary_10_1109_TCSII_2022_3208887 crossref_primary_10_1016_j_neucom_2021_10_116 crossref_primary_10_1109_TSMC_2023_3283266 crossref_primary_10_1109_TASE_2023_3310498 crossref_primary_10_1177_0142331219894413 crossref_primary_10_3389_fnbot_2019_00050 crossref_primary_10_1007_s11071_019_04932_8 crossref_primary_10_3390_s23135872 crossref_primary_10_32604_cmc_2022_020873 crossref_primary_10_1016_j_mechatronics_2024_103263 crossref_primary_10_1109_TII_2018_2831225 crossref_primary_10_3389_fnbot_2019_00047 crossref_primary_10_1016_j_neucom_2020_11_005 crossref_primary_10_1109_TNNLS_2020_2980038 crossref_primary_10_1016_j_neucom_2017_05_026 crossref_primary_10_1109_JAS_2023_123132 crossref_primary_10_1002_rob_22543 crossref_primary_10_1016_j_eswa_2024_124994 crossref_primary_10_1109_TNNLS_2021_3082950 crossref_primary_10_1109_TSMC_2020_3020145 crossref_primary_10_1016_j_neunet_2022_05_021 crossref_primary_10_3389_fpubh_2021_768278 crossref_primary_10_3389_fnbot_2018_00051 crossref_primary_10_1007_s00521_018_3523_0 crossref_primary_10_3390_s20010188 crossref_primary_10_1007_s11063_021_10678_5 crossref_primary_10_1016_j_eswa_2023_120934 crossref_primary_10_1109_TCYB_2021_3070385 crossref_primary_10_1109_ACCESS_2021_3109568 crossref_primary_10_21597_jist_396344 crossref_primary_10_1109_TASE_2023_3328338 crossref_primary_10_1109_TII_2019_2957186 crossref_primary_10_1109_ACCESS_2022_3206365 crossref_primary_10_3390_s19081758 crossref_primary_10_1007_s41315_021_00194_z crossref_primary_10_1109_TIE_2018_2851960 |
Cites_doi | 10.1109/TCYB.2013.2253461 10.1109/3477.907574 10.1016/j.actaastro.2010.06.014 10.1109/TRO.2011.2142450 10.1016/j.neunet.2009.10.004 10.1109/82.160169 10.1109/TNN.2008.2003287 10.1109/TNN.2003.810607 10.1109/41.510637 10.1109/TNN.2006.881046 10.1109/JRA.1987.1087111 10.1109/TSMCB.2004.839913 10.1109/TNNLS.2013.2244908 10.1080/00207721.2012.724116 10.1109/TIE.2011.2143372 10.1109/TRA.2002.801046 10.1109/TSMCB.2004.830347 10.1016/j.neunet.2004.05.006 10.1109/TNNLS.2015.2435014 10.1016/j.mcm.2011.01.014 10.1109/TRA.2002.805651 10.1109/70.75903 10.1016/j.neunet.2011.09.001 10.1177/0278364914521306 10.1109/TNNLS.2012.2184800 10.1109/TASE.2004.836760 10.1109/TNN.2010.2052631 10.1016/j.neucom.2012.01.034 10.1109/TSMCB.2003.811519 10.1017/CBO9780511804441 10.1162/NECO_a_00549 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2016.2574363 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 2254 |
ExternalDocumentID | 27352398 10_1109_TNNLS_2016_2574363 7499812 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61473323; 61401385 funderid: 10.13039/501100001809 – fundername: Hong Kong Research Grant Council (RGC) within the Early Career Scheme grantid: 25214015 – fundername: Science and Technology Program of Guangzhou, China grantid: 2014J4100057 – fundername: Key Laboratory of Autonomous Systems and Networked Control within the Ministry of Education, China grantid: 2013A07 – fundername: Departmental General Research Fund within Hong Kong Polytechnic University grantid: G. UA7L funderid: 10.13039/501100004377 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-b9231bbdbaf1c0393324c7204a60e2430740e0620a618cca8179c6fc8cb80de43 |
IEDL.DBID | RIE |
ISSN | 2162-237X |
IngestDate | Thu Sep 04 23:26:24 EDT 2025 Mon Jun 30 03:25:57 EDT 2025 Thu Apr 03 07:05:47 EDT 2025 Tue Jul 01 00:27:22 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Tue Aug 26 16:38:28 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-b9231bbdbaf1c0393324c7204a60e2430740e0620a618cca8179c6fc8cb80de43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8316-5289 |
PMID | 27352398 |
PQID | 2174450523 |
PQPubID | 85436 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2016_2574363 proquest_journals_2174450523 crossref_primary_10_1109_TNNLS_2016_2574363 ieee_primary_7499812 proquest_miscellaneous_1826710156 pubmed_primary_27352398 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 sadjadian (ref9) 2005; 2 ref37 ref15 ref36 ref14 li (ref23) 2016; 14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref16 ref19 ref18 xia (ref17) 2012; 23 mohammed (ref13) 2015; 99 ref26 ref25 ref20 khalil (ref29) 2001 ref22 ref21 park (ref6) 1998 ref28 ref27 stengel (ref24) 1994 ref8 ref7 ref4 ref3 ref5 |
References_xml | – ident: ref36 doi: 10.1109/TCYB.2013.2253461 – ident: ref20 doi: 10.1109/3477.907574 – year: 1994 ident: ref24 publication-title: Optimal Control and Estimation – volume: 99 start-page: 3241 year: 2015 ident: ref13 article-title: Dynamic neural networks for kinematic redundancy resolution of parallel Stewart platforms publication-title: IEEE Trans Cybern – ident: ref5 doi: 10.1016/j.actaastro.2010.06.014 – ident: ref7 doi: 10.1109/TRO.2011.2142450 – ident: ref37 doi: 10.1016/j.neunet.2009.10.004 – volume: 14 start-page: 658 year: 2016 ident: ref23 article-title: Distributed recurrent neural networks for cooperative control of manipulators: A game-theoretic perspective publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref12 doi: 10.1109/82.160169 – ident: ref33 doi: 10.1109/TNN.2008.2003287 – ident: ref19 doi: 10.1109/TNN.2003.810607 – ident: ref3 doi: 10.1109/41.510637 – ident: ref31 doi: 10.1109/TNN.2006.881046 – ident: ref1 doi: 10.1109/JRA.1987.1087111 – ident: ref25 doi: 10.1109/TSMCB.2004.839913 – ident: ref32 doi: 10.1109/TNNLS.2013.2244908 – ident: ref21 doi: 10.1080/00207721.2012.724116 – ident: ref11 doi: 10.1109/TIE.2011.2143372 – ident: ref4 doi: 10.1109/TRA.2002.801046 – ident: ref18 doi: 10.1109/TSMCB.2004.830347 – ident: ref15 doi: 10.1016/j.neunet.2004.05.006 – ident: ref14 doi: 10.1109/TNNLS.2015.2435014 – ident: ref10 doi: 10.1016/j.mcm.2011.01.014 – ident: ref28 doi: 10.1109/TRA.2002.805651 – start-page: 107 year: 1998 ident: ref6 article-title: Novel reaction control techniques for redundant space manipulators: Theory and simulated microgravity tests publication-title: Proc IEEE Int Conf Robot Autom – ident: ref2 doi: 10.1109/70.75903 – ident: ref35 doi: 10.1016/j.neunet.2011.09.001 – volume: 2 start-page: 40 year: 2005 ident: ref9 article-title: Neural networks approaches for computing the forward kinematics of a redundant parallel manipulator publication-title: Int J Comput Intell – ident: ref8 doi: 10.1177/0278364914521306 – volume: 23 start-page: 812 year: 2012 ident: ref17 article-title: Discrete-time neural network for fast solving large linear $L_{1}$ estimation problems and its application to image restoration publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2012.2184800 – ident: ref30 doi: 10.1109/TASE.2004.836760 – ident: ref16 doi: 10.1109/TNN.2010.2052631 – ident: ref22 doi: 10.1016/j.neucom.2012.01.034 – ident: ref26 doi: 10.1109/TSMCB.2003.811519 – ident: ref27 doi: 10.1017/CBO9780511804441 – ident: ref34 doi: 10.1162/NECO_a_00549 – year: 2001 ident: ref29 publication-title: Nonlinear Systems |
SSID | ssj0000605649 |
Score | 2.6249015 |
Snippet | Redundancy resolution is a critical problem in the control of robotic manipulators. Recurrent neural networks (RNNs), as inherently parallel processing models... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2243 |
SubjectTerms | Computer simulation Control stability Control systems Kinematic control Kinematics Manipulator dynamics Manipulators Mathematical model Model accuracy Motion control neural network Neural networks nonconvex set Parallel processing Position errors Recurrent neural networks recurrent neural networks (RNNs) Redundancy redundant manipulator Reference signals robot arm Robot arms Robot control Stability analysis Theoretical analysis Tracking control |
Title | Kinematic Control of Redundant Manipulators Using Neural Networks |
URI | https://ieeexplore.ieee.org/document/7499812 https://www.ncbi.nlm.nih.gov/pubmed/27352398 https://www.proquest.com/docview/2174450523 https://www.proquest.com/docview/1826710156 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5WT158P9YXEbxp17RN0_Yooizq7sEH7K0kaQqitLKPi7_emfQBioq3QJO0zUySb5KZ-QBO6TC_SETgpanKPYFFL80L4XFlEF_HKpecopFHYzl8FreTaNKD8y4WxlrrnM_sgIruLj-vzIKOyi5ibJ4QpfASGm51rFZ3nsIRl0uHdgNfBl4QxpM2RoanF0_j8f0jOXLJAeqoCCXx5-DOHVH6uy9bkuNY-R1uum3nZg1G7QfX3iavg8VcD8zHt1yO__2jdVht8Ce7rBVmA3q23IS1ltuBNVN9Cy7vEH66dK7sqvZmZ1XBHiwFnaEw2EiVL476q5rOmPM7YJTnA7se147ls214vrl-uhp6Dd2CZ8LIn3uasJ7WuVaFbyhkF7GWIQ4bJbkNBC4GglsuA66kn6DgE5zLRhYmMTrhuRXhDiyXVWn3gCHmsCaKwsAILkxklE2ElTrWeRzjEhD3wW9HPDNNLnKixHjLnE3C08wJLCOBZY3A-nDWtXmvM3H8WXuLRrur2Qx0Hw5bwWbNZJ1lZJUJIvTDVifdY5xmdHeiSlstZhmZYQjG0Nrtw26tEF3frR7t__zOA1gJCAs4D8BDWJ5PF_YIkcxcHzsV_gSio-rD |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6tygEuLdAHWwoYqbc2WydxnORYVawWuptD2Up7s2zHkSpQgvZx6a9nxnlIIKh6sxTbSTxj-xt7Zj6AczrMrzIRBXmuy0BgMcjLSgRcW8TXqS4lp2jkRSFn9-LbKlmN4HKIhXHOeeczN6Giv8svG7ujo7KrFJtnRCn8Avd9kbfRWsOJCkdkLj3ejUIZBVGcrvooGZ5fLYti_p1cueQEtVTEkhh0cO9OKAHeH5uSZ1n5P-D0G8_0ABb9J7f-Jj8mu62Z2Me_sjk-959ew36HQNl1qzJvYOTqt3DQszuwbrIfwvUtAlCf0JXdtP7srKnYnaOwMxQHW-j6wZN_NesN854HjDJ9YNdF61q-OYL76ZflzSzoCBcCGyfhNjCE9owpja5CS0G7iLYssdhoyV0kcDkQ3HEZcS3DDEWf4Wy2srKZNRkvnYiPYa9uavcOGKIOZ5MkjqzgwiZWu0w4aVJTpikuAukYwn7Ele2ykRMpxk_lrRKeKy8wRQJTncDGcDG0-dXm4niy9iGN9lCzG-gxnPWCVd103SiyywRR-mGrz8NjnGh0e6Jr1-w2igwxhGNo747hpFWIoe9ej07__c5P8HK2XMzV_Gtx-x5eRYQMvD_gGext1zv3AXHN1nz06vwbIBzuEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinematic+Control+of+Redundant+Manipulators+Using+Neural+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Shuai&rft.au=Zhang%2C+Yunong&rft.au=Jin%2C+Long&rft.date=2017-10-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=28&rft.issue=10&rft.spage=2243&rft.epage=2254&rft_id=info:doi/10.1109%2FTNNLS.2016.2574363&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2016_2574363 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |