Kinematic Control of Redundant Manipulators Using Neural Networks

Redundancy resolution is a critical problem in the control of robotic manipulators. Recurrent neural networks (RNNs), as inherently parallel processing models for time-sequence processing, are potentially applicable for the motion control of manipulators. However, the development of neural models fo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 28; no. 10; pp. 2243 - 2254
Main Authors Li, Shuai, Zhang, Yunong, Jin, Long
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
DOI10.1109/TNNLS.2016.2574363

Cover

Loading…
Abstract Redundancy resolution is a critical problem in the control of robotic manipulators. Recurrent neural networks (RNNs), as inherently parallel processing models for time-sequence processing, are potentially applicable for the motion control of manipulators. However, the development of neural models for high-accuracy and real-time control is a challenging problem. This paper identifies two limitations of the existing RNN solutions for manipulator control, i.e., position error accumulation and the convex restriction on the projection set, and overcomes them by proposing two modified neural network models. Our method allows nonconvex sets for projection operations, and control error does not accumulate over time in the presence of noise. Unlike most works in which RNNs are used to process time sequences, the proposed approach is model-based and training-free, which makes it possible to achieve fast tracking of reference signals with superior robustness and accuracy. Theoretical analysis reveals the global stability of a system under the control of the proposed neural networks. Simulation results confirm the effectiveness of the proposed control method in both the position regulation and tracking control of redundant PUMA 560 manipulators.
AbstractList Redundancy resolution is a critical problem in the control of robotic manipulators. Recurrent neural networks (RNNs), as inherently parallel processing models for time-sequence processing, are potentially applicable for the motion control of manipulators. However, the development of neural models for high-accuracy and real-time control is a challenging problem. This paper identifies two limitations of the existing RNN solutions for manipulator control, i.e., position error accumulation and the convex restriction on the projection set, and overcomes them by proposing two modified neural network models. Our method allows nonconvex sets for projection operations, and control error does not accumulate over time in the presence of noise. Unlike most works in which RNNs are used to process time sequences, the proposed approach is model-based and training-free, which makes it possible to achieve fast tracking of reference signals with superior robustness and accuracy. Theoretical analysis reveals the global stability of a system under the control of the proposed neural networks. Simulation results confirm the effectiveness of the proposed control method in both the position regulation and tracking control of redundant PUMA 560 manipulators.
Author Yunong Zhang
Shuai Li
Long Jin
Author_xml – sequence: 1
  givenname: Shuai
  orcidid: 0000-0001-8316-5289
  surname: Li
  fullname: Li, Shuai
– sequence: 2
  givenname: Yunong
  surname: Zhang
  fullname: Zhang, Yunong
– sequence: 3
  givenname: Long
  surname: Jin
  fullname: Jin, Long
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27352398$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEYRYNUtFb_gIIMuHHTmtckmaUUX1graAV3IZPJSHSa1GQG8d-b2tZFF2bzZXHOR3LvAeg57wwAxwiOEILFxWw6nTyPMERshHNOCSM7oI8Rw0NMhOj93fnrPjiK8R2mw2DOaLEH9jEnOSaF6IPLe-vMXLVWZ2Pv2uCbzNfZk6k6VynXZg_K2UXXqNaHmL1E696yqemCatJov3z4iIdgt1ZNNEfrOQAv11ez8e1w8nhzN76cDDXJUTssC0xQWValqpGGpCAEU80xpIpBgymBnEIDGYaKIaG1EogXmtVa6FLAylAyAOervYvgPzsTWzm3UZumUc74LkokMOMIopwl9GwLffddcOl1EiNOaQ7T7xN1uqa6cm4quQh2rsK33ISTALECdPAxBlNLbdsU1TInZRuJoFxWIX-rkMsq5LqKpOItdbP9X-lkJVljzJ_AaVEIhMkPLJ2SVw
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s41315_024_00360_z
crossref_primary_10_1109_ACCESS_2018_2865754
crossref_primary_10_3390_machines10040241
crossref_primary_10_1016_j_robot_2024_104811
crossref_primary_10_1109_TNNLS_2020_2963998
crossref_primary_10_1007_s11432_018_9588_0
crossref_primary_10_1007_s00521_022_08174_5
crossref_primary_10_1109_TII_2017_2737363
crossref_primary_10_1109_ACCESS_2019_2914077
crossref_primary_10_1109_TIM_2023_3265744
crossref_primary_10_1109_TCST_2018_2799990
crossref_primary_10_1002_adc2_63
crossref_primary_10_1007_s11063_019_10095_9
crossref_primary_10_1115_1_4048104
crossref_primary_10_1109_TIE_2021_3062257
crossref_primary_10_1177_09544062231182893
crossref_primary_10_1002_int_22304
crossref_primary_10_1016_j_neucom_2018_11_001
crossref_primary_10_1109_TSMC_2017_2784828
crossref_primary_10_1007_s00521_023_08621_x
crossref_primary_10_1109_TII_2021_3099819
crossref_primary_10_3390_machines11100952
crossref_primary_10_1016_j_neucom_2021_11_025
crossref_primary_10_1109_ACCESS_2020_2990555
crossref_primary_10_1016_j_neucom_2018_10_054
crossref_primary_10_1109_TCYB_2018_2859751
crossref_primary_10_1109_TNNLS_2024_3351674
crossref_primary_10_1109_TSMC_2024_3390235
crossref_primary_10_1109_ACCESS_2020_2981688
crossref_primary_10_1109_TII_2018_2789438
crossref_primary_10_1109_TASE_2022_3186668
crossref_primary_10_1007_s00521_020_05617_9
crossref_primary_10_1080_10556788_2019_1594806
crossref_primary_10_1109_ACCESS_2020_2974248
crossref_primary_10_1109_TSMC_2017_2705160
crossref_primary_10_1007_s11063_019_09992_w
crossref_primary_10_1016_j_neucom_2018_06_057
crossref_primary_10_1016_j_neucom_2021_09_047
crossref_primary_10_1007_s00521_019_04622_x
crossref_primary_10_1109_TCDS_2022_3149622
crossref_primary_10_1109_TSMC_2017_2703140
crossref_primary_10_1109_TIE_2023_3273253
crossref_primary_10_1007_s40747_020_00178_9
crossref_primary_10_1177_09544062241305515
crossref_primary_10_1007_s00521_017_3060_2
crossref_primary_10_1109_TII_2022_3220873
crossref_primary_10_1109_TSMC_2022_3218788
crossref_primary_10_1109_TNNLS_2019_2944992
crossref_primary_10_3390_app132413240
crossref_primary_10_1088_1742_6596_1861_1_012092
crossref_primary_10_1109_TCSII_2023_3332262
crossref_primary_10_1109_TMECH_2021_3056409
crossref_primary_10_1109_TII_2023_3334305
crossref_primary_10_1109_TII_2017_2787729
crossref_primary_10_1109_TCST_2017_2756029
crossref_primary_10_1109_TNNLS_2024_3354080
crossref_primary_10_1109_TNNLS_2018_2884543
crossref_primary_10_1016_j_isatra_2023_03_042
crossref_primary_10_1007_s11063_019_10107_8
crossref_primary_10_1007_s41324_022_00500_2
crossref_primary_10_1109_TII_2019_2908442
crossref_primary_10_1109_TMECH_2022_3193136
crossref_primary_10_1109_TNNLS_2021_3109953
crossref_primary_10_1109_TNNLS_2022_3220806
crossref_primary_10_1109_TIE_2017_2774720
crossref_primary_10_1109_TNNLS_2023_3253801
crossref_primary_10_2139_ssrn_4185668
crossref_primary_10_1109_TMECH_2020_3001624
crossref_primary_10_1109_TNNLS_2020_2965553
crossref_primary_10_1109_ACCESS_2023_3315590
crossref_primary_10_1007_s00521_019_04690_z
crossref_primary_10_1080_00207160_2021_1902512
crossref_primary_10_1016_j_neunet_2022_08_012
crossref_primary_10_1007_s42423_021_00081_6
crossref_primary_10_1016_j_mechmachtheory_2020_104006
crossref_primary_10_1115_1_4038492
crossref_primary_10_1016_j_conengprac_2024_106135
crossref_primary_10_1016_j_neucom_2019_04_069
crossref_primary_10_1109_ACCESS_2018_2878462
crossref_primary_10_1109_TCYB_2021_3111204
crossref_primary_10_1109_TSMC_2023_3288224
crossref_primary_10_3390_app122311908
crossref_primary_10_1007_s11432_020_3073_5
crossref_primary_10_1109_ACCESS_2023_3290046
crossref_primary_10_1109_TNNLS_2023_3307192
crossref_primary_10_1109_TASE_2020_3027394
crossref_primary_10_1109_ACCESS_2020_2986838
crossref_primary_10_1177_09596518241245148
crossref_primary_10_1109_TFUZZ_2021_3115969
crossref_primary_10_1109_TIE_2017_2674624
crossref_primary_10_1109_TII_2019_2900659
crossref_primary_10_1016_j_neucom_2018_07_067
crossref_primary_10_3390_act12030112
crossref_primary_10_1016_j_isatra_2023_12_020
crossref_primary_10_1109_ACCESS_2020_3009178
crossref_primary_10_1109_TSMC_2017_2690460
crossref_primary_10_1016_j_procs_2021_10_030
crossref_primary_10_1109_TSMC_2021_3129794
crossref_primary_10_1007_s11075_020_00946_1
crossref_primary_10_1109_TCYB_2018_2875134
crossref_primary_10_1109_TNNLS_2020_3028304
crossref_primary_10_1142_S0219843619500245
crossref_primary_10_1016_j_measurement_2020_107964
crossref_primary_10_1109_TII_2017_2766455
crossref_primary_10_1016_j_measurement_2020_108137
crossref_primary_10_1007_s12652_021_03342_2
crossref_primary_10_2139_ssrn_4133445
crossref_primary_10_1109_TIE_2021_3114674
crossref_primary_10_1093_jcde_qwad087
crossref_primary_10_1109_ACCESS_2019_2924478
crossref_primary_10_1109_TCSII_2020_3045427
crossref_primary_10_1109_ACCESS_2018_2887233
crossref_primary_10_1115_1_4039287
crossref_primary_10_1016_j_neucom_2018_07_058
crossref_primary_10_1007_s40997_023_00596_3
crossref_primary_10_1109_TII_2023_3242810
crossref_primary_10_1016_j_neucom_2018_04_023
crossref_primary_10_1109_TIE_2020_3007099
crossref_primary_10_1109_ACCESS_2020_2969497
crossref_primary_10_3390_app12199512
crossref_primary_10_1016_j_tcs_2019_07_027
crossref_primary_10_1109_TSMC_2017_2751259
crossref_primary_10_3390_robotics11020034
crossref_primary_10_1109_TNNLS_2019_2927249
crossref_primary_10_1109_TIE_2021_3082060
crossref_primary_10_1109_TIM_2024_3363783
crossref_primary_10_1109_TIE_2020_2970635
crossref_primary_10_1080_00207721_2022_2070790
crossref_primary_10_1016_j_eswa_2022_118735
crossref_primary_10_3390_e24081121
crossref_primary_10_1007_s40435_024_01533_1
crossref_primary_10_1109_TSMC_2019_2930646
crossref_primary_10_1109_ACCESS_2020_3043190
crossref_primary_10_1109_TNNLS_2022_3175595
crossref_primary_10_17694_bajece_459568
crossref_primary_10_1109_TII_2020_2996215
crossref_primary_10_1109_TNNLS_2019_2891252
crossref_primary_10_1016_j_neucom_2019_11_039
crossref_primary_10_1109_TII_2018_2869588
crossref_primary_10_1109_TII_2019_2899909
crossref_primary_10_1016_j_jfranklin_2022_10_044
crossref_primary_10_1109_TCST_2019_2963017
crossref_primary_10_1109_TETCI_2024_3369482
crossref_primary_10_1109_TCSII_2022_3208887
crossref_primary_10_1016_j_neucom_2021_10_116
crossref_primary_10_1109_TSMC_2023_3283266
crossref_primary_10_1109_TASE_2023_3310498
crossref_primary_10_1177_0142331219894413
crossref_primary_10_3389_fnbot_2019_00050
crossref_primary_10_1007_s11071_019_04932_8
crossref_primary_10_3390_s23135872
crossref_primary_10_32604_cmc_2022_020873
crossref_primary_10_1016_j_mechatronics_2024_103263
crossref_primary_10_1109_TII_2018_2831225
crossref_primary_10_3389_fnbot_2019_00047
crossref_primary_10_1016_j_neucom_2020_11_005
crossref_primary_10_1109_TNNLS_2020_2980038
crossref_primary_10_1016_j_neucom_2017_05_026
crossref_primary_10_1109_JAS_2023_123132
crossref_primary_10_1002_rob_22543
crossref_primary_10_1016_j_eswa_2024_124994
crossref_primary_10_1109_TNNLS_2021_3082950
crossref_primary_10_1109_TSMC_2020_3020145
crossref_primary_10_1016_j_neunet_2022_05_021
crossref_primary_10_3389_fpubh_2021_768278
crossref_primary_10_3389_fnbot_2018_00051
crossref_primary_10_1007_s00521_018_3523_0
crossref_primary_10_3390_s20010188
crossref_primary_10_1007_s11063_021_10678_5
crossref_primary_10_1016_j_eswa_2023_120934
crossref_primary_10_1109_TCYB_2021_3070385
crossref_primary_10_1109_ACCESS_2021_3109568
crossref_primary_10_21597_jist_396344
crossref_primary_10_1109_TASE_2023_3328338
crossref_primary_10_1109_TII_2019_2957186
crossref_primary_10_1109_ACCESS_2022_3206365
crossref_primary_10_3390_s19081758
crossref_primary_10_1007_s41315_021_00194_z
crossref_primary_10_1109_TIE_2018_2851960
Cites_doi 10.1109/TCYB.2013.2253461
10.1109/3477.907574
10.1016/j.actaastro.2010.06.014
10.1109/TRO.2011.2142450
10.1016/j.neunet.2009.10.004
10.1109/82.160169
10.1109/TNN.2008.2003287
10.1109/TNN.2003.810607
10.1109/41.510637
10.1109/TNN.2006.881046
10.1109/JRA.1987.1087111
10.1109/TSMCB.2004.839913
10.1109/TNNLS.2013.2244908
10.1080/00207721.2012.724116
10.1109/TIE.2011.2143372
10.1109/TRA.2002.801046
10.1109/TSMCB.2004.830347
10.1016/j.neunet.2004.05.006
10.1109/TNNLS.2015.2435014
10.1016/j.mcm.2011.01.014
10.1109/TRA.2002.805651
10.1109/70.75903
10.1016/j.neunet.2011.09.001
10.1177/0278364914521306
10.1109/TNNLS.2012.2184800
10.1109/TASE.2004.836760
10.1109/TNN.2010.2052631
10.1016/j.neucom.2012.01.034
10.1109/TSMCB.2003.811519
10.1017/CBO9780511804441
10.1162/NECO_a_00549
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2016.2574363
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2254
ExternalDocumentID 27352398
10_1109_TNNLS_2016_2574363
7499812
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61473323; 61401385
  funderid: 10.13039/501100001809
– fundername: Hong Kong Research Grant Council (RGC) within the Early Career Scheme
  grantid: 25214015
– fundername: Science and Technology Program of Guangzhou, China
  grantid: 2014J4100057
– fundername: Key Laboratory of Autonomous Systems and Networked Control within the Ministry of Education, China
  grantid: 2013A07
– fundername: Departmental General Research Fund within Hong Kong Polytechnic University
  grantid: G. UA7L
  funderid: 10.13039/501100004377
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-b9231bbdbaf1c0393324c7204a60e2430740e0620a618cca8179c6fc8cb80de43
IEDL.DBID RIE
ISSN 2162-237X
IngestDate Thu Sep 04 23:26:24 EDT 2025
Mon Jun 30 03:25:57 EDT 2025
Thu Apr 03 07:05:47 EDT 2025
Tue Jul 01 00:27:22 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
Tue Aug 26 16:38:28 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-b9231bbdbaf1c0393324c7204a60e2430740e0620a618cca8179c6fc8cb80de43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8316-5289
PMID 27352398
PQID 2174450523
PQPubID 85436
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2016_2574363
proquest_journals_2174450523
crossref_primary_10_1109_TNNLS_2016_2574363
ieee_primary_7499812
proquest_miscellaneous_1826710156
pubmed_primary_27352398
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
sadjadian (ref9) 2005; 2
ref37
ref15
ref36
ref14
li (ref23) 2016; 14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref16
ref19
ref18
xia (ref17) 2012; 23
mohammed (ref13) 2015; 99
ref26
ref25
ref20
khalil (ref29) 2001
ref22
ref21
park (ref6) 1998
ref28
ref27
stengel (ref24) 1994
ref8
ref7
ref4
ref3
ref5
References_xml – ident: ref36
  doi: 10.1109/TCYB.2013.2253461
– ident: ref20
  doi: 10.1109/3477.907574
– year: 1994
  ident: ref24
  publication-title: Optimal Control and Estimation
– volume: 99
  start-page: 3241
  year: 2015
  ident: ref13
  article-title: Dynamic neural networks for kinematic redundancy resolution of parallel Stewart platforms
  publication-title: IEEE Trans Cybern
– ident: ref5
  doi: 10.1016/j.actaastro.2010.06.014
– ident: ref7
  doi: 10.1109/TRO.2011.2142450
– ident: ref37
  doi: 10.1016/j.neunet.2009.10.004
– volume: 14
  start-page: 658
  year: 2016
  ident: ref23
  article-title: Distributed recurrent neural networks for cooperative control of manipulators: A game-theoretic perspective
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref12
  doi: 10.1109/82.160169
– ident: ref33
  doi: 10.1109/TNN.2008.2003287
– ident: ref19
  doi: 10.1109/TNN.2003.810607
– ident: ref3
  doi: 10.1109/41.510637
– ident: ref31
  doi: 10.1109/TNN.2006.881046
– ident: ref1
  doi: 10.1109/JRA.1987.1087111
– ident: ref25
  doi: 10.1109/TSMCB.2004.839913
– ident: ref32
  doi: 10.1109/TNNLS.2013.2244908
– ident: ref21
  doi: 10.1080/00207721.2012.724116
– ident: ref11
  doi: 10.1109/TIE.2011.2143372
– ident: ref4
  doi: 10.1109/TRA.2002.801046
– ident: ref18
  doi: 10.1109/TSMCB.2004.830347
– ident: ref15
  doi: 10.1016/j.neunet.2004.05.006
– ident: ref14
  doi: 10.1109/TNNLS.2015.2435014
– ident: ref10
  doi: 10.1016/j.mcm.2011.01.014
– ident: ref28
  doi: 10.1109/TRA.2002.805651
– start-page: 107
  year: 1998
  ident: ref6
  article-title: Novel reaction control techniques for redundant space manipulators: Theory and simulated microgravity tests
  publication-title: Proc IEEE Int Conf Robot Autom
– ident: ref2
  doi: 10.1109/70.75903
– ident: ref35
  doi: 10.1016/j.neunet.2011.09.001
– volume: 2
  start-page: 40
  year: 2005
  ident: ref9
  article-title: Neural networks approaches for computing the forward kinematics of a redundant parallel manipulator
  publication-title: Int J Comput Intell
– ident: ref8
  doi: 10.1177/0278364914521306
– volume: 23
  start-page: 812
  year: 2012
  ident: ref17
  article-title: Discrete-time neural network for fast solving large linear $L_{1}$ estimation problems and its application to image restoration
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2184800
– ident: ref30
  doi: 10.1109/TASE.2004.836760
– ident: ref16
  doi: 10.1109/TNN.2010.2052631
– ident: ref22
  doi: 10.1016/j.neucom.2012.01.034
– ident: ref26
  doi: 10.1109/TSMCB.2003.811519
– ident: ref27
  doi: 10.1017/CBO9780511804441
– ident: ref34
  doi: 10.1162/NECO_a_00549
– year: 2001
  ident: ref29
  publication-title: Nonlinear Systems
SSID ssj0000605649
Score 2.6249015
Snippet Redundancy resolution is a critical problem in the control of robotic manipulators. Recurrent neural networks (RNNs), as inherently parallel processing models...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2243
SubjectTerms Computer simulation
Control stability
Control systems
Kinematic control
Kinematics
Manipulator dynamics
Manipulators
Mathematical model
Model accuracy
Motion control
neural network
Neural networks
nonconvex set
Parallel processing
Position errors
Recurrent neural networks
recurrent neural networks (RNNs)
Redundancy
redundant manipulator
Reference signals
robot arm
Robot arms
Robot control
Stability analysis
Theoretical analysis
Tracking control
Title Kinematic Control of Redundant Manipulators Using Neural Networks
URI https://ieeexplore.ieee.org/document/7499812
https://www.ncbi.nlm.nih.gov/pubmed/27352398
https://www.proquest.com/docview/2174450523
https://www.proquest.com/docview/1826710156
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5WT158P9YXEbxp17RN0_Yooizq7sEH7K0kaQqitLKPi7_emfQBioq3QJO0zUySb5KZ-QBO6TC_SETgpanKPYFFL80L4XFlEF_HKpecopFHYzl8FreTaNKD8y4WxlrrnM_sgIruLj-vzIKOyi5ibJ4QpfASGm51rFZ3nsIRl0uHdgNfBl4QxpM2RoanF0_j8f0jOXLJAeqoCCXx5-DOHVH6uy9bkuNY-R1uum3nZg1G7QfX3iavg8VcD8zHt1yO__2jdVht8Ce7rBVmA3q23IS1ltuBNVN9Cy7vEH66dK7sqvZmZ1XBHiwFnaEw2EiVL476q5rOmPM7YJTnA7se147ls214vrl-uhp6Dd2CZ8LIn3uasJ7WuVaFbyhkF7GWIQ4bJbkNBC4GglsuA66kn6DgE5zLRhYmMTrhuRXhDiyXVWn3gCHmsCaKwsAILkxklE2ElTrWeRzjEhD3wW9HPDNNLnKixHjLnE3C08wJLCOBZY3A-nDWtXmvM3H8WXuLRrur2Qx0Hw5bwWbNZJ1lZJUJIvTDVifdY5xmdHeiSlstZhmZYQjG0Nrtw26tEF3frR7t__zOA1gJCAs4D8BDWJ5PF_YIkcxcHzsV_gSio-rD
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6tygEuLdAHWwoYqbc2WydxnORYVawWuptD2Up7s2zHkSpQgvZx6a9nxnlIIKh6sxTbSTxj-xt7Zj6AczrMrzIRBXmuy0BgMcjLSgRcW8TXqS4lp2jkRSFn9-LbKlmN4HKIhXHOeeczN6Giv8svG7ujo7KrFJtnRCn8Avd9kbfRWsOJCkdkLj3ejUIZBVGcrvooGZ5fLYti_p1cueQEtVTEkhh0cO9OKAHeH5uSZ1n5P-D0G8_0ABb9J7f-Jj8mu62Z2Me_sjk-959ew36HQNl1qzJvYOTqt3DQszuwbrIfwvUtAlCf0JXdtP7srKnYnaOwMxQHW-j6wZN_NesN854HjDJ9YNdF61q-OYL76ZflzSzoCBcCGyfhNjCE9owpja5CS0G7iLYssdhoyV0kcDkQ3HEZcS3DDEWf4Wy2srKZNRkvnYiPYa9uavcOGKIOZ5MkjqzgwiZWu0w4aVJTpikuAukYwn7Ele2ykRMpxk_lrRKeKy8wRQJTncDGcDG0-dXm4niy9iGN9lCzG-gxnPWCVd103SiyywRR-mGrz8NjnGh0e6Jr1-w2igwxhGNo747hpFWIoe9ej07__c5P8HK2XMzV_Gtx-x5eRYQMvD_gGext1zv3AXHN1nz06vwbIBzuEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinematic+Control+of+Redundant+Manipulators+Using+Neural+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Shuai&rft.au=Zhang%2C+Yunong&rft.au=Jin%2C+Long&rft.date=2017-10-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=28&rft.issue=10&rft.spage=2243&rft.epage=2254&rft_id=info:doi/10.1109%2FTNNLS.2016.2574363&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2016_2574363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon