Kinematic Control of Redundant Manipulators Using Neural Networks

Redundancy resolution is a critical problem in the control of robotic manipulators. Recurrent neural networks (RNNs), as inherently parallel processing models for time-sequence processing, are potentially applicable for the motion control of manipulators. However, the development of neural models fo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 28; no. 10; pp. 2243 - 2254
Main Authors Li, Shuai, Zhang, Yunong, Jin, Long
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Redundancy resolution is a critical problem in the control of robotic manipulators. Recurrent neural networks (RNNs), as inherently parallel processing models for time-sequence processing, are potentially applicable for the motion control of manipulators. However, the development of neural models for high-accuracy and real-time control is a challenging problem. This paper identifies two limitations of the existing RNN solutions for manipulator control, i.e., position error accumulation and the convex restriction on the projection set, and overcomes them by proposing two modified neural network models. Our method allows nonconvex sets for projection operations, and control error does not accumulate over time in the presence of noise. Unlike most works in which RNNs are used to process time sequences, the proposed approach is model-based and training-free, which makes it possible to achieve fast tracking of reference signals with superior robustness and accuracy. Theoretical analysis reveals the global stability of a system under the control of the proposed neural networks. Simulation results confirm the effectiveness of the proposed control method in both the position regulation and tracking control of redundant PUMA 560 manipulators.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2016.2574363