Clifford-Valued Distributed Optimization Based on Recurrent Neural Networks

In this paper, we address the Clifford-valued distributed optimization subject to linear equality and inequality constraints. The objective function of the optimization problems is composed of the sum of convex functions defined in the Clifford domain. Based on the generalized Clifford gradient, a s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 10; pp. 7248 - 7259
Main Authors Xia, Zicong, Liu, Yang, Kou, Kit Ian, Wang, Jun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we address the Clifford-valued distributed optimization subject to linear equality and inequality constraints. The objective function of the optimization problems is composed of the sum of convex functions defined in the Clifford domain. Based on the generalized Clifford gradient, a system of multiple Clifford-valued recurrent neural networks (RNNs) is proposed for solving the distributed optimization problems. Each Clifford-valued RNN minimizes a local objective function individually, with local interactions with others. The convergence of the neural system is rigorously proved based on the Lyapunov theory. Two illustrative examples are delineated to demonstrate the viability of the results in this article.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2021.3139865