Automatic A-Phase Detection of Cyclic Alternating Patterns in Sleep Using Dynamic Temporal Information
The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been linked to neurological pathologies. CAP sequences comprise multiple, consecutive cycles of phasic activation (A-phases)....
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 27; no. 9; pp. 1695 - 1703 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been linked to neurological pathologies. CAP sequences comprise multiple, consecutive cycles of phasic activation (A-phases). Here, we propose a novel, automated system exploiting the dynamical, temporal information in electroencephalography (EEG) recordings for the classification of A-phases and their subtypes. Using recurrent neural networks (RNN), crucial information in the temporal behavior of the EEG is extracted. The automatic classification system is equipped to deal with the biasing issue of imbalanced data sets and uses state-of-the-art signal processing methods to reduce inter-subject variation. To evaluate our system, we applied recordings from the publicly available CAP Sleep Database on Physionet. Our results show that the RNN improved the detection accuracy by 3-5% and the F1-score by approximately 7% on two data sets compared to a normal feed-forward neural network. Our system achieves a sensitivity of approximately 76-78% and F1-score between 63-68%, significantly outperforming existing technologies. Moreover, its sensitivity for subtype classification of 60-63% (A1), 42-45% (A2), and 71-74% (A3) indicates superior multi-class classification performance for CAP detection. In conclusion, we have developed a fully automated high performance CAP scoring system that includes A-phase subtype classification. RNN classifiers yield a significant improvement in accuracy and sensitivity compared to previously proposed systems. |
---|---|
AbstractList | The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been linked to neurological pathologies. CAP sequences comprise multiple, consecutive cycles of phasic activation (A-phases). Here, we propose a novel, automated system exploiting the dynamical, temporal information in electroencephalography (EEG) recordings for the classification of A-phases and their subtypes. Using recurrent neural networks (RNN), crucial information in the temporal behavior of the EEG is extracted. The automatic classification system is equipped to deal with the biasing issue of imbalanced data sets and uses state-of-the-art signal processing methods to reduce inter-subject variation. To evaluate our system, we applied recordings from the publicly available CAP Sleep Database on Physionet. Our results show that the RNN improved the detection accuracy by 3–5% and the F1-score by approximately 7% on two data sets compared to a normal feed-forward neural network. Our system achieves a sensitivity of approximately 76–78% and F1-score between 63–68%, significantly outperforming existing technologies. Moreover, its sensitivity for subtype classification of 60–63% (A1), 42–45% (A2), and 71–74% (A3) indicates superior multi-class classification performance for CAP detection. In conclusion, we have developed a fully automated high performance CAP scoring system that includes A-phase subtype classification. RNN classifiers yield a significant improvement in accuracy and sensitivity compared to previously proposed systems. The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been linked to neurological pathologies. CAP sequences comprise multiple, consecutive cycles of phasic activation (A-phases). Here, we propose a novel, automated system exploiting the dynamical, temporal information in electroencephalography (EEG) recordings for the classification of A-phases and their subtypes. Using recurrent neural networks (RNN), crucial information in the temporal behavior of the EEG is extracted. The automatic classification system is equipped to deal with the biasing issue of imbalanced data sets and uses state-of-the-art signal processing methods to reduce inter-subject variation. To evaluate our system, we applied recordings from the publicly available CAP Sleep Database on Physionet. Our results show that the RNN improved the detection accuracy by 3-5% and the F -score by approximately 7% on two data sets compared to a normal feed-forward neural network. Our system achieves a sensitivity of approximately 76-78% and F -score between 63-68%, significantly outperforming existing technologies. Moreover, its sensitivity for subtype classification of 60-63% (A1), 42-45% (A2), and 71-74% (A3) indicates superior multi-class classification performance for CAP detection. In conclusion, we have developed a fully automated high performance CAP scoring system that includes A-phase subtype classification. RNN classifiers yield a significant improvement in accuracy and sensitivity compared to previously proposed systems. The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been linked to neurological pathologies. CAP sequences comprise multiple, consecutive cycles of phasic activation (A-phases). Here, we propose a novel, automated system exploiting the dynamical, temporal information in electroencephalography (EEG) recordings for the classification of A-phases and their subtypes. Using recurrent neural networks (RNN), crucial information in the temporal behavior of the EEG is extracted. The automatic classification system is equipped to deal with the biasing issue of imbalanced data sets and uses state-of-the-art signal processing methods to reduce inter-subject variation. To evaluate our system, we applied recordings from the publicly available CAP Sleep Database on Physionet. Our results show that the RNN improved the detection accuracy by 3-5% and the F1-score by approximately 7% on two data sets compared to a normal feed-forward neural network. Our system achieves a sensitivity of approximately 76-78% and F1-score between 63-68%, significantly outperforming existing technologies. Moreover, its sensitivity for subtype classification of 60-63% (A1), 42-45% (A2), and 71-74% (A3) indicates superior multi-class classification performance for CAP detection. In conclusion, we have developed a fully automated high performance CAP scoring system that includes A-phase subtype classification. RNN classifiers yield a significant improvement in accuracy and sensitivity compared to previously proposed systems.The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been linked to neurological pathologies. CAP sequences comprise multiple, consecutive cycles of phasic activation (A-phases). Here, we propose a novel, automated system exploiting the dynamical, temporal information in electroencephalography (EEG) recordings for the classification of A-phases and their subtypes. Using recurrent neural networks (RNN), crucial information in the temporal behavior of the EEG is extracted. The automatic classification system is equipped to deal with the biasing issue of imbalanced data sets and uses state-of-the-art signal processing methods to reduce inter-subject variation. To evaluate our system, we applied recordings from the publicly available CAP Sleep Database on Physionet. Our results show that the RNN improved the detection accuracy by 3-5% and the F1-score by approximately 7% on two data sets compared to a normal feed-forward neural network. Our system achieves a sensitivity of approximately 76-78% and F1-score between 63-68%, significantly outperforming existing technologies. Moreover, its sensitivity for subtype classification of 60-63% (A1), 42-45% (A2), and 71-74% (A3) indicates superior multi-class classification performance for CAP detection. In conclusion, we have developed a fully automated high performance CAP scoring system that includes A-phase subtype classification. RNN classifiers yield a significant improvement in accuracy and sensitivity compared to previously proposed systems. |
Author | Baumert, Mathias Hartmann, Simon |
Author_xml | – sequence: 1 givenname: Simon orcidid: 0000-0001-9689-0594 surname: Hartmann fullname: Hartmann, Simon organization: School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia – sequence: 2 givenname: Mathias orcidid: 0000-0003-2984-2167 surname: Baumert fullname: Baumert, Mathias email: mathias.baumert@adelaide.edu.au organization: School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31425039$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu3CAYRlGUKLf2BVqpQsomG0-5GliOJmkaKWqjZrJGGOPWEYYp4MW8fe2ZSRdZZMXtnE_6-S7AcYjBAfAJowXGSH1d_3j6dbsgCKsFUZRJIo_AOeZcVohgdDzvKasYJegMXOT8ghAWNRen4IxiRjii6hx0y7HEwZTewmX1-MdkB29ccbb0McDYwdXW-vnNF5fChIXf8NGU-ZBhH-CTd24Dn_N8f7MNZpjYtRs2MRkP70MX05wdwwdw0hmf3cfDegmev92uV9-rh59396vlQ2Upx6VqWCtbQhshBeocx63gdFpbhVteK9owwZBBijRWNaJliiNLu7YxtbWCTi69BNf73E2Kf0eXix76bJ33Jrg4Zk2IlAiRWuIJvXqDvsRxmtHvKMGEqNkc-OVAjc3gWr1J_WDSVr_-4ATIPWBTzDm5Ttu-7GYuyfReY6TnsvSuLD2XpQ9lTSp5o76mvyt93ku9c-6_IIVikiH6D06Mnz0 |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1007_s11517_020_02144_6 crossref_primary_10_1016_j_compbiomed_2023_107191 crossref_primary_10_1088_1741_2552_abd047 crossref_primary_10_1093_sleep_zsaa016 crossref_primary_10_3390_e24050688 crossref_primary_10_3390_e25101395 crossref_primary_10_1093_sleep_zsac217 crossref_primary_10_1016_j_sleep_2020_07_033 crossref_primary_10_1016_j_sleep_2024_09_025 crossref_primary_10_1093_sleep_zsac255 crossref_primary_10_1109_ACCESS_2023_3278800 crossref_primary_10_1111_jsr_13891 crossref_primary_10_1111_jsr_14265 crossref_primary_10_3389_fnins_2021_751730 crossref_primary_10_1007_s10489_021_02597_8 crossref_primary_10_1016_j_compbiomed_2022_105804 crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_3390_s22062225 crossref_primary_10_1016_j_smrv_2022_101611 crossref_primary_10_3390_ijerph191710892 crossref_primary_10_1016_j_bspc_2023_104730 crossref_primary_10_1111_jsr_13831 crossref_primary_10_1007_s13534_023_00303_w crossref_primary_10_1098_rsta_2020_0248 crossref_primary_10_1016_j_sleep_2023_11_005 crossref_primary_10_1109_TNSRE_2022_3205267 crossref_primary_10_1371_journal_pone_0260984 crossref_primary_10_1111_exsy_12939 crossref_primary_10_3390_app131810299 crossref_primary_10_3390_electronics12132954 crossref_primary_10_3390_e21121203 crossref_primary_10_1109_TBME_2022_3174680 crossref_primary_10_3390_diagnostics12102510 crossref_primary_10_1016_j_cmpb_2020_105314 crossref_primary_10_3390_ijerph18063087 crossref_primary_10_1093_sleep_zsaa145 crossref_primary_10_5664_jcsm_10394 crossref_primary_10_3390_diagnostics11081380 crossref_primary_10_1016_j_compbiomed_2020_103691 crossref_primary_10_1016_j_bspc_2022_103800 crossref_primary_10_1016_j_cmpb_2023_107471 crossref_primary_10_1016_j_bspc_2020_102063 crossref_primary_10_1109_JBHI_2023_3303197 crossref_primary_10_3390_s21217230 |
Cites_doi | 10.1007/s11517-012-0881-0 10.1016/S1389-9457(01)00149-6 10.1007/s11517-015-1349-9 10.1186/s12938-018-0616-z 10.1016/0013-4694(70)90143-4 10.1109/ASRU.2013.6707742 10.1016/S1388-2457(02)00284-5 10.1016/j.clinph.2011.02.031 10.1016/j.neunet.2005.06.042 10.1161/01.CIR.101.23.e215 10.1109/WISP.2005.1531630 10.1109/TNSRE.2017.2721116 10.5370/JEET.2014.9.4.1210 10.1162/neco.1997.9.8.1735 10.1109/IranianCEE.2015.7146184 10.1109/72.279181 10.1109/TSP.2015.7296302 10.1016/j.smrv.2011.02.003 10.1109/TNSRE.2017.2733220 10.1109/EMBC.2015.7319617 10.1053/smrv.1999.0083 10.1016/j.ipm.2009.03.002 10.1109/TBME.2010.2051440 10.1016/S1567-4231(09)70033-4 10.1016/j.clinph.2013.04.005 10.1007/978-3-319-64689-3_29 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2019.2934828 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1703 |
ExternalDocumentID | 31425039 10_1109_TNSRE_2019_2934828 8794840 |
Genre | orig-research Journal Article |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c351t-b4d8d23b7870fe51d753fe5d91d5693b4740a092bc9b7d4950c3fdba6cc734d83 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Thu Jul 10 18:03:56 EDT 2025 Fri Jul 25 02:33:13 EDT 2025 Thu Apr 03 07:02:31 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Tue Jul 01 00:43:19 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-b4d8d23b7870fe51d753fe5d91d5693b4740a092bc9b7d4950c3fdba6cc734d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9689-0594 0000-0003-2984-2167 |
PMID | 31425039 |
PQID | 2287477648 |
PQPubID | 85423 |
PageCount | 9 |
ParticipantIDs | ieee_primary_8794840 proquest_miscellaneous_2288002681 pubmed_primary_31425039 proquest_journals_2287477648 crossref_primary_10_1109_TNSRE_2019_2934828 crossref_citationtrail_10_1109_TNSRE_2019_2934828 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | mariani (ref21) 2011; 122 ref12 ref15 ref14 iber (ref1) 2007 ref31 mendonça (ref13) 2018 nan (ref33) 2012 ref11 ref32 ref10 ref17 ref16 ref19 ref18 pastor-pellicer (ref30) 2013 bishop (ref24) 2006 gers (ref29) 2003; 3 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref8 rechtschaffen (ref2) 1968 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref10 doi: 10.1007/s11517-012-0881-0 – ident: ref3 doi: 10.1016/S1389-9457(01)00149-6 – ident: ref7 doi: 10.1007/s11517-015-1349-9 – ident: ref14 doi: 10.1186/s12938-018-0616-z – year: 1968 ident: ref2 publication-title: A manual of standardized terminology techniques and scoring system for sleep stages of human subjects – ident: ref22 doi: 10.1016/0013-4694(70)90143-4 – ident: ref25 doi: 10.1109/ASRU.2013.6707742 – ident: ref8 doi: 10.1016/S1388-2457(02)00284-5 – volume: 122 start-page: 2016 year: 2011 ident: ref21 article-title: Characterization of a phases during the cyclic alternating pattern of sleep publication-title: Clinical Neurophysiol doi: 10.1016/j.clinph.2011.02.031 – ident: ref26 doi: 10.1016/j.neunet.2005.06.042 – ident: ref17 doi: 10.1161/01.CIR.101.23.e215 – ident: ref11 doi: 10.1109/WISP.2005.1531630 – ident: ref16 doi: 10.1109/TNSRE.2017.2721116 – ident: ref23 doi: 10.5370/JEET.2014.9.4.1210 – year: 2007 ident: ref1 publication-title: The AASM Manual for the scoring of sleep and associated events Rules terminology and technical specifications – ident: ref28 doi: 10.1162/neco.1997.9.8.1735 – ident: ref9 doi: 10.1109/IranianCEE.2015.7146184 – ident: ref27 doi: 10.1109/72.279181 – volume: 3 start-page: 115 year: 2003 ident: ref29 article-title: Learning precise timing with LSTM recurrent networks publication-title: J Mach Learn Res – ident: ref20 doi: 10.1109/TSP.2015.7296302 – ident: ref5 doi: 10.1016/j.smrv.2011.02.003 – year: 2012 ident: ref33 article-title: Optimizing F-measure: A tale of two approaches publication-title: arXiv 1206 4625 – ident: ref15 doi: 10.1109/TNSRE.2017.2733220 – ident: ref19 doi: 10.1109/EMBC.2015.7319617 – ident: ref6 doi: 10.1053/smrv.1999.0083 – ident: ref32 doi: 10.1016/j.ipm.2009.03.002 – start-page: 376 year: 2013 ident: ref30 article-title: F-measure as the error function to train neural networks publication-title: Advances in Computational Intelligence – ident: ref18 doi: 10.1109/TBME.2010.2051440 – ident: ref4 doi: 10.1016/S1567-4231(09)70033-4 – ident: ref12 doi: 10.1016/j.clinph.2013.04.005 – start-page: 1 year: 2018 ident: ref13 article-title: Automatic detection of cyclic alternating pattern publication-title: Neural Comput Appl – year: 2006 ident: ref24 publication-title: Pattern Recognition and Machine Learning – ident: ref31 doi: 10.1007/978-3-319-64689-3_29 |
SSID | ssj0017657 |
Score | 2.4832242 |
Snippet | The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1695 |
SubjectTerms | Adult Algorithms Automation Classification Cyclic alternating pattern (CAP) Databases, Factual Datasets Deep Learning EEG Electrocardiography Electroencephalography electroencephalography (EEG) Electroencephalography - methods Feature extraction Female Humans long short-term memory network (LSTM) Male Neural networks Neural Networks, Computer Recurrent neural networks Reproducibility of Results Sensitivity Sensitivity and Specificity Signal processing Sleep Sleep - physiology Sleep Stages - physiology |
Title | Automatic A-Phase Detection of Cyclic Alternating Patterns in Sleep Using Dynamic Temporal Information |
URI | https://ieeexplore.ieee.org/document/8794840 https://www.ncbi.nlm.nih.gov/pubmed/31425039 https://www.proquest.com/docview/2287477648 https://www.proquest.com/docview/2288002681 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT90wEB4Bh4pLKaXLa6FypbaXNo8kdhYfn1iEKoEQPCRukVdaNTioJAf66zt2FkFFq16SSB5vmnE8Y898A_CBZlqhWLCIWS7xQXkkhC2jUhRW6lIpaXzs8PFJfnTBvl5mlyvwZYqFMcYE5zMz95_hLl83qvNHZbslCg8aJKuwioZbH6s13RgUeUD1xAWM_dI0HgNkYr67PDk_O_BeXHyOmxtDG2MdntAEpTX2OcLv7Uchwcrfdc2w5xxuwPE42t7V5Me8a-Vc_foDyPF_p_MMng7KJ1n00rIJK8Y9h4_3gYbJskcZIJ_I2QMM7y2wi65tAsArWUSn33D3I_umDZ5cjjSW7N2p2pfVwxGjuyKnAbzT3ZLvjpzXxtyQ4KFA9u-cuEbaZY-LVZMhKMo39QIuDg-We0fRkKUhUjRL2kgyXeqUSr_yrckSjQYQvjVPdJZzKlnBYhHzVCouC432WKyo1VLkShUU69KXsOYaZ14DKSxqDwnFX0LKWWKVoCLLi5yZBFsUGZtBMvKqUsP0fSaNugqmTMyrwOrKs7oaWD2Dz1Odmx7A45_UW55PE-XAohlsjyJRDWv8tkp9qoACh4e13k_FuDr9lYtwpukCjdfI8zKZwatelKa2Rwl883ifb2Hdj6z3Z9uGtfZnZ3ZQAWrluyD5vwFAHwBp |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB6VIkFfuMqxUMBIwAvNNl47hx9XPbRAd1W1qdS3yFegakgqmjyUX8_YOVQQIF6SSD5ia2YyM_HMNwBvWWQ0sgUPeCEUXpgIpCzSIJVJoUyqtbIud3i5ihen_NNZdLYG22MujLXWB5_ZqXv0Z_mm1q37VbaTIvOgQ3ILbqPej2iXrTWeGSSxx_VEEcY3s1k4pMiEYidbnRzvuzguMUX1xtHL2IA7jCK_hq5K-A2N5Eus_N3a9Frn4D4sh_V2wSYX07ZRU_3jNyjH_93QA7jXm59k3vHLQ1iz1SN4dxNqmGQdzgB5T45_QfHehGLeNrWHeCXz4Ogr6j-yZxsfy1WRuiC717p0bWX_k7H6Qo48fGd1Rc4rclJae0l8jALZu67kN-ybdchYJenTotxUj-H0YD_bXQR9nYZAs4g2geImNTOmnOwXNqIGXSC8G0FNFAumeMJDGYqZ0kIlBj2yULPCKBlrnTAcy57AelVX9hmQpED7gTL8KMwEp4WWTEZxEnNLcUYZ8QnQgVa57rfvammUuXdmQpF7UueO1HlP6gl8GMdcdhAe_-y96eg09uxJNIGtgSXyXsqv8pkrFpDg8nDUm7EZ5dMdusjK1q3v42zyOKUTeNqx0jj3wIHP__zO13B3kS0P88OPq88vYMOtsotu24L15ntrX6I51KhXXgp-AsLoA7I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+A-Phase+Detection+of+Cyclic+Alternating+Patterns+in+Sleep+Using+Dynamic+Temporal+Information&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Hartmann%2C+Simon&rft.au=Baumert%2C+Mathias&rft.date=2019-09-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=27&rft.issue=9&rft.spage=1695&rft.epage=1703&rft_id=info:doi/10.1109%2FTNSRE.2019.2934828&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2019_2934828 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |