Automatic A-Phase Detection of Cyclic Alternating Patterns in Sleep Using Dynamic Temporal Information

The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been linked to neurological pathologies. CAP sequences comprise multiple, consecutive cycles of phasic activation (A-phases)....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 27; no. 9; pp. 1695 - 1703
Main Authors Hartmann, Simon, Baumert, Mathias
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been linked to neurological pathologies. CAP sequences comprise multiple, consecutive cycles of phasic activation (A-phases). Here, we propose a novel, automated system exploiting the dynamical, temporal information in electroencephalography (EEG) recordings for the classification of A-phases and their subtypes. Using recurrent neural networks (RNN), crucial information in the temporal behavior of the EEG is extracted. The automatic classification system is equipped to deal with the biasing issue of imbalanced data sets and uses state-of-the-art signal processing methods to reduce inter-subject variation. To evaluate our system, we applied recordings from the publicly available CAP Sleep Database on Physionet. Our results show that the RNN improved the detection accuracy by 3-5% and the F1-score by approximately 7% on two data sets compared to a normal feed-forward neural network. Our system achieves a sensitivity of approximately 76-78% and F1-score between 63-68%, significantly outperforming existing technologies. Moreover, its sensitivity for subtype classification of 60-63% (A1), 42-45% (A2), and 71-74% (A3) indicates superior multi-class classification performance for CAP detection. In conclusion, we have developed a fully automated high performance CAP scoring system that includes A-phase subtype classification. RNN classifiers yield a significant improvement in accuracy and sensitivity compared to previously proposed systems.
AbstractList The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been linked to neurological pathologies. CAP sequences comprise multiple, consecutive cycles of phasic activation (A-phases). Here, we propose a novel, automated system exploiting the dynamical, temporal information in electroencephalography (EEG) recordings for the classification of A-phases and their subtypes. Using recurrent neural networks (RNN), crucial information in the temporal behavior of the EEG is extracted. The automatic classification system is equipped to deal with the biasing issue of imbalanced data sets and uses state-of-the-art signal processing methods to reduce inter-subject variation. To evaluate our system, we applied recordings from the publicly available CAP Sleep Database on Physionet. Our results show that the RNN improved the detection accuracy by 3–5% and the F1-score by approximately 7% on two data sets compared to a normal feed-forward neural network. Our system achieves a sensitivity of approximately 76–78% and F1-score between 63–68%, significantly outperforming existing technologies. Moreover, its sensitivity for subtype classification of 60–63% (A1), 42–45% (A2), and 71–74% (A3) indicates superior multi-class classification performance for CAP detection. In conclusion, we have developed a fully automated high performance CAP scoring system that includes A-phase subtype classification. RNN classifiers yield a significant improvement in accuracy and sensitivity compared to previously proposed systems.
The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been linked to neurological pathologies. CAP sequences comprise multiple, consecutive cycles of phasic activation (A-phases). Here, we propose a novel, automated system exploiting the dynamical, temporal information in electroencephalography (EEG) recordings for the classification of A-phases and their subtypes. Using recurrent neural networks (RNN), crucial information in the temporal behavior of the EEG is extracted. The automatic classification system is equipped to deal with the biasing issue of imbalanced data sets and uses state-of-the-art signal processing methods to reduce inter-subject variation. To evaluate our system, we applied recordings from the publicly available CAP Sleep Database on Physionet. Our results show that the RNN improved the detection accuracy by 3-5% and the F -score by approximately 7% on two data sets compared to a normal feed-forward neural network. Our system achieves a sensitivity of approximately 76-78% and F -score between 63-68%, significantly outperforming existing technologies. Moreover, its sensitivity for subtype classification of 60-63% (A1), 42-45% (A2), and 71-74% (A3) indicates superior multi-class classification performance for CAP detection. In conclusion, we have developed a fully automated high performance CAP scoring system that includes A-phase subtype classification. RNN classifiers yield a significant improvement in accuracy and sensitivity compared to previously proposed systems.
The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been linked to neurological pathologies. CAP sequences comprise multiple, consecutive cycles of phasic activation (A-phases). Here, we propose a novel, automated system exploiting the dynamical, temporal information in electroencephalography (EEG) recordings for the classification of A-phases and their subtypes. Using recurrent neural networks (RNN), crucial information in the temporal behavior of the EEG is extracted. The automatic classification system is equipped to deal with the biasing issue of imbalanced data sets and uses state-of-the-art signal processing methods to reduce inter-subject variation. To evaluate our system, we applied recordings from the publicly available CAP Sleep Database on Physionet. Our results show that the RNN improved the detection accuracy by 3-5% and the F1-score by approximately 7% on two data sets compared to a normal feed-forward neural network. Our system achieves a sensitivity of approximately 76-78% and F1-score between 63-68%, significantly outperforming existing technologies. Moreover, its sensitivity for subtype classification of 60-63% (A1), 42-45% (A2), and 71-74% (A3) indicates superior multi-class classification performance for CAP detection. In conclusion, we have developed a fully automated high performance CAP scoring system that includes A-phase subtype classification. RNN classifiers yield a significant improvement in accuracy and sensitivity compared to previously proposed systems.The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been linked to neurological pathologies. CAP sequences comprise multiple, consecutive cycles of phasic activation (A-phases). Here, we propose a novel, automated system exploiting the dynamical, temporal information in electroencephalography (EEG) recordings for the classification of A-phases and their subtypes. Using recurrent neural networks (RNN), crucial information in the temporal behavior of the EEG is extracted. The automatic classification system is equipped to deal with the biasing issue of imbalanced data sets and uses state-of-the-art signal processing methods to reduce inter-subject variation. To evaluate our system, we applied recordings from the publicly available CAP Sleep Database on Physionet. Our results show that the RNN improved the detection accuracy by 3-5% and the F1-score by approximately 7% on two data sets compared to a normal feed-forward neural network. Our system achieves a sensitivity of approximately 76-78% and F1-score between 63-68%, significantly outperforming existing technologies. Moreover, its sensitivity for subtype classification of 60-63% (A1), 42-45% (A2), and 71-74% (A3) indicates superior multi-class classification performance for CAP detection. In conclusion, we have developed a fully automated high performance CAP scoring system that includes A-phase subtype classification. RNN classifiers yield a significant improvement in accuracy and sensitivity compared to previously proposed systems.
Author Baumert, Mathias
Hartmann, Simon
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0001-9689-0594
  surname: Hartmann
  fullname: Hartmann, Simon
  organization: School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
– sequence: 2
  givenname: Mathias
  orcidid: 0000-0003-2984-2167
  surname: Baumert
  fullname: Baumert, Mathias
  email: mathias.baumert@adelaide.edu.au
  organization: School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31425039$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu3CAYRlGUKLf2BVqpQsomG0-5GliOJmkaKWqjZrJGGOPWEYYp4MW8fe2ZSRdZZMXtnE_6-S7AcYjBAfAJowXGSH1d_3j6dbsgCKsFUZRJIo_AOeZcVohgdDzvKasYJegMXOT8ghAWNRen4IxiRjii6hx0y7HEwZTewmX1-MdkB29ccbb0McDYwdXW-vnNF5fChIXf8NGU-ZBhH-CTd24Dn_N8f7MNZpjYtRs2MRkP70MX05wdwwdw0hmf3cfDegmev92uV9-rh59396vlQ2Upx6VqWCtbQhshBeocx63gdFpbhVteK9owwZBBijRWNaJliiNLu7YxtbWCTi69BNf73E2Kf0eXix76bJ33Jrg4Zk2IlAiRWuIJvXqDvsRxmtHvKMGEqNkc-OVAjc3gWr1J_WDSVr_-4ATIPWBTzDm5Ttu-7GYuyfReY6TnsvSuLD2XpQ9lTSp5o76mvyt93ku9c-6_IIVikiH6D06Mnz0
CODEN ITNSB3
CitedBy_id crossref_primary_10_1007_s11517_020_02144_6
crossref_primary_10_1016_j_compbiomed_2023_107191
crossref_primary_10_1088_1741_2552_abd047
crossref_primary_10_1093_sleep_zsaa016
crossref_primary_10_3390_e24050688
crossref_primary_10_3390_e25101395
crossref_primary_10_1093_sleep_zsac217
crossref_primary_10_1016_j_sleep_2020_07_033
crossref_primary_10_1016_j_sleep_2024_09_025
crossref_primary_10_1093_sleep_zsac255
crossref_primary_10_1109_ACCESS_2023_3278800
crossref_primary_10_1111_jsr_13891
crossref_primary_10_1111_jsr_14265
crossref_primary_10_3389_fnins_2021_751730
crossref_primary_10_1007_s10489_021_02597_8
crossref_primary_10_1016_j_compbiomed_2022_105804
crossref_primary_10_1109_TCDS_2021_3079712
crossref_primary_10_3390_s22062225
crossref_primary_10_1016_j_smrv_2022_101611
crossref_primary_10_3390_ijerph191710892
crossref_primary_10_1016_j_bspc_2023_104730
crossref_primary_10_1111_jsr_13831
crossref_primary_10_1007_s13534_023_00303_w
crossref_primary_10_1098_rsta_2020_0248
crossref_primary_10_1016_j_sleep_2023_11_005
crossref_primary_10_1109_TNSRE_2022_3205267
crossref_primary_10_1371_journal_pone_0260984
crossref_primary_10_1111_exsy_12939
crossref_primary_10_3390_app131810299
crossref_primary_10_3390_electronics12132954
crossref_primary_10_3390_e21121203
crossref_primary_10_1109_TBME_2022_3174680
crossref_primary_10_3390_diagnostics12102510
crossref_primary_10_1016_j_cmpb_2020_105314
crossref_primary_10_3390_ijerph18063087
crossref_primary_10_1093_sleep_zsaa145
crossref_primary_10_5664_jcsm_10394
crossref_primary_10_3390_diagnostics11081380
crossref_primary_10_1016_j_compbiomed_2020_103691
crossref_primary_10_1016_j_bspc_2022_103800
crossref_primary_10_1016_j_cmpb_2023_107471
crossref_primary_10_1016_j_bspc_2020_102063
crossref_primary_10_1109_JBHI_2023_3303197
crossref_primary_10_3390_s21217230
Cites_doi 10.1007/s11517-012-0881-0
10.1016/S1389-9457(01)00149-6
10.1007/s11517-015-1349-9
10.1186/s12938-018-0616-z
10.1016/0013-4694(70)90143-4
10.1109/ASRU.2013.6707742
10.1016/S1388-2457(02)00284-5
10.1016/j.clinph.2011.02.031
10.1016/j.neunet.2005.06.042
10.1161/01.CIR.101.23.e215
10.1109/WISP.2005.1531630
10.1109/TNSRE.2017.2721116
10.5370/JEET.2014.9.4.1210
10.1162/neco.1997.9.8.1735
10.1109/IranianCEE.2015.7146184
10.1109/72.279181
10.1109/TSP.2015.7296302
10.1016/j.smrv.2011.02.003
10.1109/TNSRE.2017.2733220
10.1109/EMBC.2015.7319617
10.1053/smrv.1999.0083
10.1016/j.ipm.2009.03.002
10.1109/TBME.2010.2051440
10.1016/S1567-4231(09)70033-4
10.1016/j.clinph.2013.04.005
10.1007/978-3-319-64689-3_29
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2019.2934828
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1703
ExternalDocumentID 31425039
10_1109_TNSRE_2019_2934828
8794840
Genre orig-research
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c351t-b4d8d23b7870fe51d753fe5d91d5693b4740a092bc9b7d4950c3fdba6cc734d83
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Jul 10 18:03:56 EDT 2025
Fri Jul 25 02:33:13 EDT 2025
Thu Apr 03 07:02:31 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Tue Jul 01 00:43:19 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-b4d8d23b7870fe51d753fe5d91d5693b4740a092bc9b7d4950c3fdba6cc734d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9689-0594
0000-0003-2984-2167
PMID 31425039
PQID 2287477648
PQPubID 85423
PageCount 9
ParticipantIDs ieee_primary_8794840
proquest_miscellaneous_2288002681
pubmed_primary_31425039
proquest_journals_2287477648
crossref_primary_10_1109_TNSRE_2019_2934828
crossref_citationtrail_10_1109_TNSRE_2019_2934828
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References mariani (ref21) 2011; 122
ref12
ref15
ref14
iber (ref1) 2007
ref31
mendonça (ref13) 2018
nan (ref33) 2012
ref11
ref32
ref10
ref17
ref16
ref19
ref18
pastor-pellicer (ref30) 2013
bishop (ref24) 2006
gers (ref29) 2003; 3
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref8
rechtschaffen (ref2) 1968
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1007/s11517-012-0881-0
– ident: ref3
  doi: 10.1016/S1389-9457(01)00149-6
– ident: ref7
  doi: 10.1007/s11517-015-1349-9
– ident: ref14
  doi: 10.1186/s12938-018-0616-z
– year: 1968
  ident: ref2
  publication-title: A manual of standardized terminology techniques and scoring system for sleep stages of human subjects
– ident: ref22
  doi: 10.1016/0013-4694(70)90143-4
– ident: ref25
  doi: 10.1109/ASRU.2013.6707742
– ident: ref8
  doi: 10.1016/S1388-2457(02)00284-5
– volume: 122
  start-page: 2016
  year: 2011
  ident: ref21
  article-title: Characterization of a phases during the cyclic alternating pattern of sleep
  publication-title: Clinical Neurophysiol
  doi: 10.1016/j.clinph.2011.02.031
– ident: ref26
  doi: 10.1016/j.neunet.2005.06.042
– ident: ref17
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref11
  doi: 10.1109/WISP.2005.1531630
– ident: ref16
  doi: 10.1109/TNSRE.2017.2721116
– ident: ref23
  doi: 10.5370/JEET.2014.9.4.1210
– year: 2007
  ident: ref1
  publication-title: The AASM Manual for the scoring of sleep and associated events Rules terminology and technical specifications
– ident: ref28
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref9
  doi: 10.1109/IranianCEE.2015.7146184
– ident: ref27
  doi: 10.1109/72.279181
– volume: 3
  start-page: 115
  year: 2003
  ident: ref29
  article-title: Learning precise timing with LSTM recurrent networks
  publication-title: J Mach Learn Res
– ident: ref20
  doi: 10.1109/TSP.2015.7296302
– ident: ref5
  doi: 10.1016/j.smrv.2011.02.003
– year: 2012
  ident: ref33
  article-title: Optimizing F-measure: A tale of two approaches
  publication-title: arXiv 1206 4625
– ident: ref15
  doi: 10.1109/TNSRE.2017.2733220
– ident: ref19
  doi: 10.1109/EMBC.2015.7319617
– ident: ref6
  doi: 10.1053/smrv.1999.0083
– ident: ref32
  doi: 10.1016/j.ipm.2009.03.002
– start-page: 376
  year: 2013
  ident: ref30
  article-title: F-measure as the error function to train neural networks
  publication-title: Advances in Computational Intelligence
– ident: ref18
  doi: 10.1109/TBME.2010.2051440
– ident: ref4
  doi: 10.1016/S1567-4231(09)70033-4
– ident: ref12
  doi: 10.1016/j.clinph.2013.04.005
– start-page: 1
  year: 2018
  ident: ref13
  article-title: Automatic detection of cyclic alternating pattern
  publication-title: Neural Comput Appl
– year: 2006
  ident: ref24
  publication-title: Pattern Recognition and Machine Learning
– ident: ref31
  doi: 10.1007/978-3-319-64689-3_29
SSID ssj0017657
Score 2.4832242
Snippet The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1695
SubjectTerms Adult
Algorithms
Automation
Classification
Cyclic alternating pattern (CAP)
Databases, Factual
Datasets
Deep Learning
EEG
Electrocardiography
Electroencephalography
electroencephalography (EEG)
Electroencephalography - methods
Feature extraction
Female
Humans
long short-term memory network (LSTM)
Male
Neural networks
Neural Networks, Computer
Recurrent neural networks
Reproducibility of Results
Sensitivity
Sensitivity and Specificity
Signal processing
Sleep
Sleep - physiology
Sleep Stages - physiology
Title Automatic A-Phase Detection of Cyclic Alternating Patterns in Sleep Using Dynamic Temporal Information
URI https://ieeexplore.ieee.org/document/8794840
https://www.ncbi.nlm.nih.gov/pubmed/31425039
https://www.proquest.com/docview/2287477648
https://www.proquest.com/docview/2288002681
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT90wEB4Bh4pLKaXLa6FypbaXNo8kdhYfn1iEKoEQPCRukVdaNTioJAf66zt2FkFFq16SSB5vmnE8Y898A_CBZlqhWLCIWS7xQXkkhC2jUhRW6lIpaXzs8PFJfnTBvl5mlyvwZYqFMcYE5zMz95_hLl83qvNHZbslCg8aJKuwioZbH6s13RgUeUD1xAWM_dI0HgNkYr67PDk_O_BeXHyOmxtDG2MdntAEpTX2OcLv7Uchwcrfdc2w5xxuwPE42t7V5Me8a-Vc_foDyPF_p_MMng7KJ1n00rIJK8Y9h4_3gYbJskcZIJ_I2QMM7y2wi65tAsArWUSn33D3I_umDZ5cjjSW7N2p2pfVwxGjuyKnAbzT3ZLvjpzXxtyQ4KFA9u-cuEbaZY-LVZMhKMo39QIuDg-We0fRkKUhUjRL2kgyXeqUSr_yrckSjQYQvjVPdJZzKlnBYhHzVCouC432WKyo1VLkShUU69KXsOYaZ14DKSxqDwnFX0LKWWKVoCLLi5yZBFsUGZtBMvKqUsP0fSaNugqmTMyrwOrKs7oaWD2Dz1Odmx7A45_UW55PE-XAohlsjyJRDWv8tkp9qoACh4e13k_FuDr9lYtwpukCjdfI8zKZwatelKa2Rwl883ifb2Hdj6z3Z9uGtfZnZ3ZQAWrluyD5vwFAHwBp
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB6VIkFfuMqxUMBIwAvNNl47hx9XPbRAd1W1qdS3yFegakgqmjyUX8_YOVQQIF6SSD5ia2YyM_HMNwBvWWQ0sgUPeCEUXpgIpCzSIJVJoUyqtbIud3i5ihen_NNZdLYG22MujLXWB5_ZqXv0Z_mm1q37VbaTIvOgQ3ILbqPej2iXrTWeGSSxx_VEEcY3s1k4pMiEYidbnRzvuzguMUX1xtHL2IA7jCK_hq5K-A2N5Eus_N3a9Frn4D4sh_V2wSYX07ZRU_3jNyjH_93QA7jXm59k3vHLQ1iz1SN4dxNqmGQdzgB5T45_QfHehGLeNrWHeCXz4Ogr6j-yZxsfy1WRuiC717p0bWX_k7H6Qo48fGd1Rc4rclJae0l8jALZu67kN-ybdchYJenTotxUj-H0YD_bXQR9nYZAs4g2geImNTOmnOwXNqIGXSC8G0FNFAumeMJDGYqZ0kIlBj2yULPCKBlrnTAcy57AelVX9hmQpED7gTL8KMwEp4WWTEZxEnNLcUYZ8QnQgVa57rfvammUuXdmQpF7UueO1HlP6gl8GMdcdhAe_-y96eg09uxJNIGtgSXyXsqv8pkrFpDg8nDUm7EZ5dMdusjK1q3v42zyOKUTeNqx0jj3wIHP__zO13B3kS0P88OPq88vYMOtsotu24L15ntrX6I51KhXXgp-AsLoA7I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+A-Phase+Detection+of+Cyclic+Alternating+Patterns+in+Sleep+Using+Dynamic+Temporal+Information&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Hartmann%2C+Simon&rft.au=Baumert%2C+Mathias&rft.date=2019-09-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=27&rft.issue=9&rft.spage=1695&rft.epage=1703&rft_id=info:doi/10.1109%2FTNSRE.2019.2934828&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2019_2934828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon