Automatic A-Phase Detection of Cyclic Alternating Patterns in Sleep Using Dynamic Temporal Information

The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been linked to neurological pathologies. CAP sequences comprise multiple, consecutive cycles of phasic activation (A-phases)....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 27; no. 9; pp. 1695 - 1703
Main Authors Hartmann, Simon, Baumert, Mathias
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The identification of recurrent, transient perturbations in brain activity during sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been linked to neurological pathologies. CAP sequences comprise multiple, consecutive cycles of phasic activation (A-phases). Here, we propose a novel, automated system exploiting the dynamical, temporal information in electroencephalography (EEG) recordings for the classification of A-phases and their subtypes. Using recurrent neural networks (RNN), crucial information in the temporal behavior of the EEG is extracted. The automatic classification system is equipped to deal with the biasing issue of imbalanced data sets and uses state-of-the-art signal processing methods to reduce inter-subject variation. To evaluate our system, we applied recordings from the publicly available CAP Sleep Database on Physionet. Our results show that the RNN improved the detection accuracy by 3-5% and the F1-score by approximately 7% on two data sets compared to a normal feed-forward neural network. Our system achieves a sensitivity of approximately 76-78% and F1-score between 63-68%, significantly outperforming existing technologies. Moreover, its sensitivity for subtype classification of 60-63% (A1), 42-45% (A2), and 71-74% (A3) indicates superior multi-class classification performance for CAP detection. In conclusion, we have developed a fully automated high performance CAP scoring system that includes A-phase subtype classification. RNN classifiers yield a significant improvement in accuracy and sensitivity compared to previously proposed systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2019.2934828