Rheology and stability of oil-in-water nanoemulsions stabilised by anionic surfactant and gelatin 1) addition of nonionic, cationic and ethoxylated-cationic co-surfactants

Oil-in-water emulsions stabilised by anionic surfactant and gelatin provide the bulk of photographic coating fluids. Their rheology is of crucial importance to the fluids’ performance in coating and their concentration in drying. Gelatin complexes with non-adsorbed micelles and adsorbs to the oil-su...

Full description

Saved in:
Bibliographic Details
Published inAdvances in colloid and interface science Vol. 144; no. 1; pp. 24 - 29
Main Authors Howe, Andrew M., Pitt, Alan R.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 02.12.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Oil-in-water emulsions stabilised by anionic surfactant and gelatin provide the bulk of photographic coating fluids. Their rheology is of crucial importance to the fluids’ performance in coating and their concentration in drying. Gelatin complexes with non-adsorbed micelles and adsorbs to the oil-surfactant-water interface, which effects an increase in the viscosity of the continuous phase and the volume of the nano-sized oil droplets, respectively. The consequences of these interactions are high viscosity and strong shear thinning. Here, the effects on the emulsion rheology of a series of bulk, commercially available surfactants were studied. These co-surfactants were chosen so as to weaken the interactions between gelatin and the anionic surfactant and hence reduce viscosity and thinning thus enabling the emulsions to be concentrated. The co-surfactants had polar head groups of three types: simple nonionic based on polyethylenenoxide, simple cationic based on a quaternary alkyltrimethyl ammonium, and combined nonionic-cationic based on a quaternised bis-ethoxylated primary amine. This last type proved the most effective at reducing the low-shear viscosity of the emulsion and reducing the shear thinning, although, at high concentrations the polyethoxylated cationic surfactants induced flocculation and coalescence of the oil droplets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0001-8686
1873-3727
DOI:10.1016/j.cis.2008.08.003