A Wireless Headstage System Based on Neural-Recording Chip Featuring 315 nW Kickback-Reduction SAR ADC

Wireless neural-recording instruments eliminate the bulky cables in multi-channel signal transmission, while the system size should be reduced to mitigate the impact on freely-moving animals. As the battery usually dominates the system size, the neural-recording chip should be low power to minimize...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 17; no. 1; pp. 105 - 115
Main Authors Zhang, Yunshan, Yang, Changgui, Sun, Junhong, Li, Zhuhao, Gao, Huan, Luo, Yuxuan, Xu, Kedi, Pan, Gang, Zhao, Bo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4545
1940-9990
1940-9990
DOI10.1109/TBCAS.2022.3224387

Cover

Loading…
Abstract Wireless neural-recording instruments eliminate the bulky cables in multi-channel signal transmission, while the system size should be reduced to mitigate the impact on freely-moving animals. As the battery usually dominates the system size, the neural-recording chip should be low power to minimize the battery in long-termly monitoring. In general, a neural-recording chip consists of an analog front end (AFE) and an 8 bit <inline-formula><tex-math notation="LaTeX">-</tex-math></inline-formula>10 bit analog-to-digital converter (ADC), while it's challenging to design an ADC with an 8<inline-formula><tex-math notation="LaTeX">-</tex-math></inline-formula>10 effective number of bits (ENOB) and sub-<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula> W power consumption due to the kickback noise. In this work, we propose a kickback-reduction technique for a successive-approximation-register (SAR) ADC based on neural-recording chip. Fabricated in 65 nm CMOS process, the proposed technique reduce the ADC power to 315 nW, resulting in an 8-channel neural-recording chip with 249 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>W in total. Measured results show that the chip achieves an ADC ENOB of 9.73 bits, as well as an AFE gain of 43.3 dB and input-referred noise (IRN) of 9.68 <inline-formula><tex-math notation="LaTeX">\mu V_{rms}</tex-math></inline-formula> in a bandwidth of 0.9 Hz<inline-formula><tex-math notation="LaTeX">-</tex-math></inline-formula>7.2 kHz. Combined with a BLE chip and a PCB antenna, the chip is implemented into a 2.6 g wireless headstage system (w/o battery), and an in-vivo demonstration is conducted on a male Sprague-Dawley rat with Parkinson's disease. The headstage system transfers the in-vivo neural signals to a commodity smartphone through BLE, and the miniature size induces little impact on freely-moving activities.
AbstractList Wireless neural-recording instruments eliminate the bulky cables in multi-channel signal transmission, while the system size should be reduced to mitigate the impact on freely-moving animals. As the battery usually dominates the system size, the neural-recording chip should be low power to minimize the battery in long-termly monitoring. In general, a neural-recording chip consists of an analog front end (AFE) and an 8 bit -10 bit analog-to-digital converter (ADC), while it's challenging to design an ADC with an 8 -10 effective number of bits (ENOB) and sub- μ W power consumption due to the kickback noise. In this work, we propose a kickback-reduction technique for a successive-approximation-register (SAR) ADC based on neural-recording chip. Fabricated in 65 nm CMOS process, the proposed technique reduce the ADC power to 315 nW, resulting in an 8-channel neural-recording chip with 249 μW in total. Measured results show that the chip achieves an ADC ENOB of 9.73 bits, as well as an AFE gain of 43.3 dB and input-referred noise (IRN) of 9.68 μV in a bandwidth of 0.9 Hz -7.2 kHz. Combined with a BLE chip and a PCB antenna, the chip is implemented into a 2.6 g wireless headstage system (w/o battery), and an in-vivo demonstration is conducted on a male Sprague-Dawley rat with Parkinson's disease. The headstage system transfers the in-vivo neural signals to a commodity smartphone through BLE, and the miniature size induces little impact on freely-moving activities.
Wireless neural-recording instruments eliminate the bulky cables in multi-channel signal transmission, while the system size should be reduced to mitigate the impact on freely-moving animals. As the battery usually dominates the system size, the neural-recording chip should be low power to minimize the battery in long-termly monitoring. In general, a neural-recording chip consists of an analog front end (AFE) and an 8 bit [Formula Omitted]10 bit analog-to-digital converter (ADC), while it's challenging to design an ADC with an 8[Formula Omitted]10 effective number of bits (ENOB) and sub-[Formula Omitted] W power consumption due to the kickback noise. In this work, we propose a kickback-reduction technique for a successive-approximation-register (SAR) ADC based on neural-recording chip. Fabricated in 65 nm CMOS process, the proposed technique reduce the ADC power to 315 nW, resulting in an 8-channel neural-recording chip with 249 [Formula Omitted]W in total. Measured results show that the chip achieves an ADC ENOB of 9.73 bits, as well as an AFE gain of 43.3 dB and input-referred noise (IRN) of 9.68 [Formula Omitted] in a bandwidth of 0.9 Hz[Formula Omitted]7.2 kHz. Combined with a BLE chip and a PCB antenna, the chip is implemented into a 2.6 g wireless headstage system (w/o battery), and an in-vivo demonstration is conducted on a male Sprague-Dawley rat with Parkinson's disease. The headstage system transfers the in-vivo neural signals to a commodity smartphone through BLE, and the miniature size induces little impact on freely-moving activities.
Wireless neural-recording instruments eliminate the bulky cables in multi-channel signal transmission, while the system size should be reduced to mitigate the impact on freely-moving animals. As the battery usually dominates the system size, the neural-recording chip should be low power to minimize the battery in long-termly monitoring. In general, a neural-recording chip consists of an analog front end (AFE) and an 8 bit <inline-formula><tex-math notation="LaTeX">-</tex-math></inline-formula>10 bit analog-to-digital converter (ADC), while it's challenging to design an ADC with an 8<inline-formula><tex-math notation="LaTeX">-</tex-math></inline-formula>10 effective number of bits (ENOB) and sub-<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula> W power consumption due to the kickback noise. In this work, we propose a kickback-reduction technique for a successive-approximation-register (SAR) ADC based on neural-recording chip. Fabricated in 65 nm CMOS process, the proposed technique reduce the ADC power to 315 nW, resulting in an 8-channel neural-recording chip with 249 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>W in total. Measured results show that the chip achieves an ADC ENOB of 9.73 bits, as well as an AFE gain of 43.3 dB and input-referred noise (IRN) of 9.68 <inline-formula><tex-math notation="LaTeX">\mu V_{rms}</tex-math></inline-formula> in a bandwidth of 0.9 Hz<inline-formula><tex-math notation="LaTeX">-</tex-math></inline-formula>7.2 kHz. Combined with a BLE chip and a PCB antenna, the chip is implemented into a 2.6 g wireless headstage system (w/o battery), and an in-vivo demonstration is conducted on a male Sprague-Dawley rat with Parkinson's disease. The headstage system transfers the in-vivo neural signals to a commodity smartphone through BLE, and the miniature size induces little impact on freely-moving activities.
Wireless neural-recording instruments eliminate the bulky cables in multi-channel signal transmission, while the system size should be reduced to mitigate the impact on freely-moving animals. As the battery usually dominates the system size, the neural-recording chip should be low power to minimize the battery in long-termly monitoring. In general, a neural-recording chip consists of an analog front end (AFE) and an 8 bit -10 bit analog-to-digital converter (ADC), while it's challenging to design an ADC with an 8 -10 effective number of bits (ENOB) and sub- μ W power consumption due to the kickback noise. In this work, we propose a kickback-reduction technique for a successive-approximation-register (SAR) ADC based on neural-recording chip. Fabricated in 65 nm CMOS process, the proposed technique reduce the ADC power to 315 nW, resulting in an 8-channel neural-recording chip with 249 μW in total. Measured results show that the chip achieves an ADC ENOB of 9.73 bits, as well as an AFE gain of 43.3 dB and input-referred noise (IRN) of 9.68 μVrms in a bandwidth of 0.9 Hz -7.2 kHz. Combined with a BLE chip and a PCB antenna, the chip is implemented into a 2.6 g wireless headstage system (w/o battery), and an in-vivo demonstration is conducted on a male Sprague-Dawley rat with Parkinson's disease. The headstage system transfers the in-vivo neural signals to a commodity smartphone through BLE, and the miniature size induces little impact on freely-moving activities.Wireless neural-recording instruments eliminate the bulky cables in multi-channel signal transmission, while the system size should be reduced to mitigate the impact on freely-moving animals. As the battery usually dominates the system size, the neural-recording chip should be low power to minimize the battery in long-termly monitoring. In general, a neural-recording chip consists of an analog front end (AFE) and an 8 bit -10 bit analog-to-digital converter (ADC), while it's challenging to design an ADC with an 8 -10 effective number of bits (ENOB) and sub- μ W power consumption due to the kickback noise. In this work, we propose a kickback-reduction technique for a successive-approximation-register (SAR) ADC based on neural-recording chip. Fabricated in 65 nm CMOS process, the proposed technique reduce the ADC power to 315 nW, resulting in an 8-channel neural-recording chip with 249 μW in total. Measured results show that the chip achieves an ADC ENOB of 9.73 bits, as well as an AFE gain of 43.3 dB and input-referred noise (IRN) of 9.68 μVrms in a bandwidth of 0.9 Hz -7.2 kHz. Combined with a BLE chip and a PCB antenna, the chip is implemented into a 2.6 g wireless headstage system (w/o battery), and an in-vivo demonstration is conducted on a male Sprague-Dawley rat with Parkinson's disease. The headstage system transfers the in-vivo neural signals to a commodity smartphone through BLE, and the miniature size induces little impact on freely-moving activities.
Author Luo, Yuxuan
Zhao, Bo
Zhang, Yunshan
Gao, Huan
Pan, Gang
Yang, Changgui
Sun, Junhong
Xu, Kedi
Li, Zhuhao
Author_xml – sequence: 1
  givenname: Yunshan
  orcidid: 0000-0003-0778-105X
  surname: Zhang
  fullname: Zhang, Yunshan
  email: zys214@zju.edu.cn
  organization: School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Changgui
  orcidid: 0000-0001-8041-282X
  surname: Yang
  fullname: Yang, Changgui
  email: yangchg@zju.edu.cn
  organization: School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Junhong
  surname: Sun
  fullname: Sun, Junhong
  email: jhsun@zju.edu.cn
  organization: School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Zhuhao
  orcidid: 0000-0003-3249-7923
  surname: Li
  fullname: Li, Zhuhao
  email: lizhuhao1997@zju.edu.cn
  organization: School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Huan
  orcidid: 0000-0003-0860-2033
  surname: Gao
  fullname: Gao, Huan
  email: gaohuan067@zju.edu.cn
  organization: Qiushi Academy of Advanced Studies, Zhejiang University, Hangzhou, China
– sequence: 6
  givenname: Yuxuan
  orcidid: 0000-0002-9819-0660
  surname: Luo
  fullname: Luo, Yuxuan
  email: luoyx@zju.edu.cn
  organization: School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China
– sequence: 7
  givenname: Kedi
  orcidid: 0000-0002-9059-3860
  surname: Xu
  fullname: Xu, Kedi
  email: xukd@zju.edu.cn
  organization: Qiushi Academy of Advanced Studies, Zhejiang University, Hangzhou, China
– sequence: 8
  givenname: Gang
  orcidid: 0000-0002-4049-6181
  surname: Pan
  fullname: Pan, Gang
  email: gpan@zju.edu.cn
  organization: College of Computer Science and Technology, Zhejiang University, Hangzhou, China
– sequence: 9
  givenname: Bo
  orcidid: 0000-0003-3462-6952
  surname: Zhao
  fullname: Zhao, Bo
  email: zhaobo@zju.edu.cn
  organization: School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36423310$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhi1EVT7aP0AlZIlLL9n6O_ExhFKqIpBYKo6W40yoIZssdnLg3-OwSw8cOI1Hep6RZ94DtNsPPSB0RMmCUqJ_3J5W5XLBCGMLzpjgRb6D9qkWJNNak935zVkmpJB76CDGB0KkYpp9RntcCcY5JfuoLfGdD9BBjPgCbBNHew94-RxHWOFTG6HBQ4-vYAq2y27ADaHx_T2u_vk1Pgc7TmFuOZW4v8N_vHusrXtMYDO50SdzWd7g8qz6gj61tovwdVsP0d_zn7fVRXZ5_et3VV5mjks6ZtYWhVMtdYoVSgouG-4EbySv80Ip1dYyEcypnDRUKKiJKlqibG1zbYlL3CH6vpm7DsPTBHE0Kx8ddJ3tYZiiYbkgkoq0e0JP3qEPwxT69LtEpcNRkiuWqOMtNdUraMw6-JUNz-btggkoNoALQ4wBWuP8aOfdx2B9Zygxc1jmNSwzh2W2YSWVvVPfpn8ofdtIHgD-C1orrqTmL2UvnEc
CODEN ITBCCW
CitedBy_id crossref_primary_10_1109_JSSC_2024_3366176
crossref_primary_10_1109_TBCAS_2023_3302654
crossref_primary_10_1109_TCSI_2023_3268686
crossref_primary_10_1109_TBCAS_2023_3318699
crossref_primary_10_1587_elex_21_20240685
crossref_primary_10_3390_jlpea14030045
crossref_primary_10_1109_ACCESS_2024_3502617
Cites_doi 10.1109/JSSC.2019.2915583
10.1109/TCSII.2010.2050937
10.1109/TBCAS.2021.3108725
10.1109/SMACD.2017.7981602
10.1109/JSSC.2012.2217635
10.1109/JSSC.2021.3056040
10.1109/TCSI.2019.2901795
10.1109/JSSC.2010.2042254
10.1109/JSSC.2014.2362851
10.1109/MWSCAS47672.2021.9531668
10.1109/JSSC.2021.3086853
10.1109/JSSC.2021.3116021
10.1109/JSSC.2012.2198350
10.1109/TBME.2021.3093542
10.1109/JSSC.2014.2364036
10.1109/ASICON.2015.7517103
10.1109/TVLSI.2017.2747132
10.1109/TBCAS.2022.3146324
10.1109/TCSII.2006.875308
10.1109/TCSII.2019.2957727
10.1109/TCSII.2017.2769107
10.1007/978-3-662-44482-5
10.1109/TBCAS.2020.2982912
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
DOI 10.1109/TBCAS.2022.3224387
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Biotechnology Research Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 115
ExternalDocumentID 36423310
10_1109_TBCAS_2022_3224387
9963659
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: China Brain Project
  grantid: 2021ZD0200401
– fundername: National Natural Science Foundation of China
  grantid: 61974130; 62074135
  funderid: 10.13039/501100001809
– fundername: Zhejiang Key R&D Program
  grantid: 2020C03004; 2021C03002
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c351t-aa88c6f1c62865435d3c43d53b78666fb5aa82c670d146eb068f06aba79a0cd53
IEDL.DBID RIE
ISSN 1932-4545
1940-9990
IngestDate Thu Jul 10 22:31:24 EDT 2025
Mon Jun 30 08:32:21 EDT 2025
Thu Apr 03 07:07:40 EDT 2025
Tue Jul 01 03:26:38 EDT 2025
Thu Apr 24 22:55:38 EDT 2025
Wed Aug 27 02:49:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-aa88c6f1c62865435d3c43d53b78666fb5aa82c670d146eb068f06aba79a0cd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3249-7923
0000-0003-0860-2033
0000-0002-9059-3860
0000-0001-8041-282X
0000-0003-3462-6952
0000-0003-0778-105X
0000-0002-9819-0660
0000-0002-4049-6181
PMID 36423310
PQID 2793210762
PQPubID 85510
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TBCAS_2022_3224387
ieee_primary_9963659
proquest_miscellaneous_2740514331
proquest_journals_2793210762
crossref_primary_10_1109_TBCAS_2022_3224387
pubmed_primary_36423310
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref12
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
Xie (ref23) 2019; 66
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1109/JSSC.2019.2915583
– ident: ref13
  doi: 10.1109/TCSII.2010.2050937
– ident: ref5
  doi: 10.1109/TBCAS.2021.3108725
– ident: ref15
  doi: 10.1109/SMACD.2017.7981602
– volume: 66
  start-page: 26
  issue: 1
  year: 2019
  ident: ref23
  article-title: A 10-bit 5 MS/s VCO-SAR ADC in 0.18-$\mu$m CMOS
  publication-title: IEEE Trans. Circuits Syst. II: Exp. Briefs
– ident: ref10
  doi: 10.1109/JSSC.2012.2217635
– ident: ref4
  doi: 10.1109/JSSC.2021.3056040
– ident: ref8
  doi: 10.1109/TCSI.2019.2901795
– ident: ref24
  doi: 10.1109/JSSC.2010.2042254
– ident: ref7
  doi: 10.1109/JSSC.2014.2362851
– ident: ref17
  doi: 10.1109/MWSCAS47672.2021.9531668
– ident: ref22
  doi: 10.1109/JSSC.2021.3086853
– ident: ref3
  doi: 10.1109/JSSC.2021.3116021
– ident: ref12
  doi: 10.1109/JSSC.2012.2198350
– ident: ref1
  doi: 10.1109/TBME.2021.3093542
– ident: ref16
  doi: 10.1109/JSSC.2014.2364036
– ident: ref21
  doi: 10.1109/ASICON.2015.7517103
– ident: ref20
  doi: 10.1109/TVLSI.2017.2747132
– ident: ref2
  doi: 10.1109/TBCAS.2022.3146324
– ident: ref14
  doi: 10.1109/TCSII.2006.875308
– ident: ref18
  doi: 10.1109/TCSII.2019.2957727
– ident: ref9
  doi: 10.1109/TCSII.2017.2769107
– ident: ref6
  doi: 10.1007/978-3-662-44482-5
– ident: ref19
  doi: 10.1109/TBCAS.2020.2982912
SSID ssj0056292
Score 2.3863719
Snippet Wireless neural-recording instruments eliminate the bulky cables in multi-channel signal transmission, while the system size should be reduced to mitigate the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105
SubjectTerms Analog to digital converters
Analog-digital conversion
analog-to-digital converter (ADC)
Animals
Capacitors
Equipment Design
Head
IP networks
kickback noise
Kickbacks
low power
Male
Movement disorders
Neural recording
Neurodegenerative diseases
Noise levels
Parkinson's disease
Power consumption
Power management
Rats
Rats, Sprague-Dawley
Recording
Recording instruments
Registers
Signal transmission
Transistors
Wireless communication
wireless headstage
Wireless Technology
Title A Wireless Headstage System Based on Neural-Recording Chip Featuring 315 nW Kickback-Reduction SAR ADC
URI https://ieeexplore.ieee.org/document/9963659
https://www.ncbi.nlm.nih.gov/pubmed/36423310
https://www.proquest.com/docview/2793210762
https://www.proquest.com/docview/2740514331
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQoPQRoJUr9UazJHEcJ8ewFK1a0QMPlVvkVyjaVRbB7qW_vjN2EqGqrXqLlHHiaMaeb-KZbwA-8txUBqOu2Bou47zQNq6E1ZRFyI3kLqkUFSeffytm1_mXG3GzAZ_GWhjnnE8-cxO69Gf5dmnW9KvsGLE5L0S1CZtoZqFWa9h10Y37BsiER4jHWwwFMkl1fHUyrS8xFMyyCZpvzkvqvMcReHNOhbNP_JFvsPJ3rOl9ztk2nA-zDakm88l6pSfm529Ejv_7OTvwogefrA7WsgsbrnsJz59QEu5BWzNKiF3gBshmqH8Ej7eOBV5zdoIuz7Jlx4jSQy3iELviODb9cXfPCE76qkfGU8G67-zrnZlrZeYoaANLLbusL1h9On0F12efr6azuO_FEBsu0lWsVFmaok2NL2VFjGW5ybkVXMsSI6BWC5TITCETi3uv00lRtkmhtJKVSgzKvYatbtm5t8CyVtuilVIIafJU4zQyUcrWOlNqm8kkgnTQSGN6onLql7FofMCSVI1XaEMKbXqFRnA0jrkPNB3_lN4jbYySvSIiOBwU3_Qr-bHJcAPDsBh9RgQfxtu4BulgRXVuuSaZnGjk0ZwieBMMZnz2YGf7f37nATyjBvYhD_wQtlYPa_cOYc5Kv_f2_QvTHvPc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvMojUMBI3CDbJI7j5JguVAvt9kC3orfIr0C1q2wFuxd-PTN2ElUIELdIGSeOZuz5Jp75BuANz01lMOqKreEyzgtt40pYTVmE3EjukkpRcfL8tJid558uxMUOvBtrYZxzPvnMTejSn-XbtdnSr7IDxOa8ENUNuIl-PxehWmvYd9GR-xbIhEiIyVsMJTJJdbA4nNZnGAxm2QQNOOcl9d7jCL05p9LZax7Jt1j5O9r0XufoHsyH-YZkk-Vku9ET8_M3Ksf__aD7cLeHn6wO9vIAdlz3EO5cIyXcg7ZmlBK7wi2QzdACED5-dSwwm7NDdHqWrTtGpB5qFYfoFcex6bfLK0aA0tc9Mp4K1n1hx5dmqZVZoqANPLXsrP7M6vfTR3B-9GExncV9N4bYcJFuYqXK0hRtanwxK6Isy03OreBalhgDtVqgRGYKmVjcfZ1OirJNCqWVrFRiUO4x7Hbrzj0FlrXaFq2UQkiTpxqnkYlSttaZUttMJhGkg0Ya01OVU8eMVeNDlqRqvEIbUmjTKzSCt-OYq0DU8U_pPdLGKNkrIoL9QfFNv5Z_NBluYRgYo9eI4PV4G1chHa2ozq23JJMTkTyaUwRPgsGMzx7s7Nmf3_kKbs0W85Pm5OPp8XO4Te3sQ1b4Puxuvm_dCwQ9G_3S2_ovwM73KQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Wireless+Headstage+System+Based+on+Neural-Recording+Chip+Featuring+315+nW+Kickback-Reduction+SAR+ADC&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Zhang%2C+Yunshan&rft.au=Yang%2C+Changgui&rft.au=Sun%2C+Junhong&rft.au=Li%2C+Zhuhao&rft.date=2023-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=17&rft.issue=1&rft.spage=105&rft_id=info:doi/10.1109%2FTBCAS.2022.3224387&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon