Event-Based Finite-Time Neural Control for Human-in-the-Loop UAV Attitude Systems

This article focuses on the event-based finite-time neural attitude consensus control problem for the six-rotor unmanned aerial vehicle (UAV) systems with unknown disturbances. It is assumed that the six-rotor UAV systems are controlled by a human operator sending command signals to the leader. A di...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 12; pp. 10387 - 10397
Main Authors Lin, Guohuai, Li, Hongyi, Ahn, Choon Ki, Yao, Deyin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article focuses on the event-based finite-time neural attitude consensus control problem for the six-rotor unmanned aerial vehicle (UAV) systems with unknown disturbances. It is assumed that the six-rotor UAV systems are controlled by a human operator sending command signals to the leader. A disturbance observer and radial basis function neural networks (RBF NNs) are applied to address the problems regarding external disturbances and uncertain nonlinear dynamics, respectively. In addition, the proposed finite-time command filtered (FTCF) backstepping method effectively manages the issue of "explosion of complexity," where filtering errors are eliminated by the error compensation mechanism. In addition, an event-triggered mechanism is considered to alleviate the communication burden between the controller and the actuator in practice. It is shown that all signals of the six-rotor UAV systems are bounded and the consensus errors converge to a small neighborhood of the origin in finite time. Finally, the simulation results demonstrate the effectiveness of the proposed control scheme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2022.3166531