Caspase-independent cell engulfment mirrors cell death pattern in Drosophila embryos

Programmed cell death plays an essential role during Drosophila embryonic development. A stereotypic series of cellular changes occur during apoptosis, most of which are initiated by a caspase cascade that is triggered by a trio of proteins, RPR, HID and GRIM. The final step in apoptosis is engulfme...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 130; no. 23; pp. 5779 - 5789
Main Authors Mergliano, Jaime, Minden, Jonathan S
Format Journal Article
LanguageEnglish
Published England The Company of Biologists Limited 01.12.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Programmed cell death plays an essential role during Drosophila embryonic development. A stereotypic series of cellular changes occur during apoptosis, most of which are initiated by a caspase cascade that is triggered by a trio of proteins, RPR, HID and GRIM. The final step in apoptosis is engulfment of the cell corpse. To monitor cell engulfment in vivo, we developed a fluorogenic β-galactosidase substrate that is cleaved by an endogenous, lysosomal β-galactosidase activity. The pattern of cell engulfment in wild-type embryos correlated well with the known pattern of apoptosis. Surprisingly, the pattern of cell engulfment persisted in apoptosis-deficient embryos. We provide evidence for a caspase-independent engulfment process that affects the majority of cells expected to die in developing Drosophila embryos.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.00824