ADF10 shapes the overall organization of apical actin filaments by promoting their turnover and ordering in pollen tubes
Here, we show that ADF10 plays an important role in shaping the overall organization of apical actin filaments by promoting their turnover and ordering. ADF10 severs and depolymerizes actin filaments and is distributed throughout the entire pollen tube. In mutants, severing and monomer dissociation...
Saved in:
Published in | Journal of cell science Vol. 130; no. 23; pp. 3988 - 4001 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists Ltd
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Here, we show that
ADF10 plays an important role in shaping the overall organization of apical actin filaments by promoting their turnover and ordering. ADF10 severs and depolymerizes actin filaments
and is distributed throughout the entire pollen tube. In
mutants, severing and monomer dissociation events for apical actin filaments are reduced, and the apical actin structure extends further toward the tube base than in wild-type tubes. In particular, the percentage of apical actin filaments that form large angles to the tube growth axis is much higher in
pollen tubes, and the actin filaments are more randomly distributed, implying that ADF10 promotes their ordering. Consistent with the role of apical actin filaments in physically restricting the movement of vesicles, the region in which apical vesicles accumulate is enlarged at the tip of
pollen tubes. Both tipward and backward movements of small vesicles are altered within the growth domain of
pollen tubes. Thus, our study suggests that ADF10 shapes the organization of apical actin filaments to regulate vesicle trafficking and pollen tube growth. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.207738 |