Prescribed Performance Control of Uncertain Euler-Lagrange Systems Subject to Full-State Constraints

This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 29; no. 8; pp. 3478 - 3489
Main Authors Zhao, Kai, Song, Yongduan, Ma, Tiedong, He, Liu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and <inline-formula> <tex-math notation="LaTeX">\mathscr C^{1} </tex-math></inline-formula> smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as <inline-formula> <tex-math notation="LaTeX">t\to \infty </tex-math></inline-formula>; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation.
AbstractList This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and C1 smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as t → ∞; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation.
This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and <inline-formula> <tex-math notation="LaTeX">\mathscr C^{1} </tex-math></inline-formula> smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as <inline-formula> <tex-math notation="LaTeX">t\to \infty </tex-math></inline-formula>; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation.
This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as ; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation.
This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as ; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation.This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as ; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation.
Author Zhao, Kai
Ma, Tiedong
He, Liu
Song, Yongduan
Author_xml – sequence: 1
  givenname: Kai
  orcidid: 0000-0003-0656-1901
  surname: Zhao
  fullname: Zhao, Kai
  email: zhaokai@cqu.edu.cn
  organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, and School of Automation, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Yongduan
  orcidid: 0000-0002-2167-1861
  surname: Song
  fullname: Song, Yongduan
  email: ydsong@cqu.edu.cn
  organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, and School of Automation, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Tiedong
  surname: Ma
  fullname: Ma, Tiedong
  email: tdma@cqu.edu.cn
  organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, and School of Automation, Chongqing University, Chongqing, China
– sequence: 4
  givenname: Liu
  surname: He
  fullname: He, Liu
  email: tony_he88@126.com
  organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, and School of Automation, Chongqing University, Chongqing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28809715$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9P5CAYxonRrH_WL6CJIdmLl45AS4HjZqKryURNRpO9EUpfTCdtcYEe5tvLOLNz8CAcgOT3PC95nlN0OPoRELqgZEYpUTcvj4-L5YwRKmZM5M3KA3TCaM0KVkp5uL-Lv8foPMYVyasmvK7UD3TMpCRKUH6C2ucA0YaugRY_Q3A-DGa0gOd-TMH32Dv8mt8hmW7Et1MPoViYt2DGN8DLdUwwRLycmhXYhJPHd1PfF8tk0qdDTCHLUvyJjpzpI5zvzjP0enf7Mr8vFk9_Hua_F4UtOU2FalqmpLN1QxRY4BWpmWkoNxSkoNRWkhuQtaOqNaUhvOTOcl5K54Rw4Fh5hq63vu_B_5sgJj100ULfmxH8FDVV2V-KqlYZ_fUFXfkpjPl3mhGRJ1FVkUxd7aipGaDV76EbTFjr__llgG0BG3yMAdweoURvetKfPelNT3rXUxbJLyLb5ci6TeSm67-XXm6lHQDsZ0lCpBCq_AC9raAf
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s11071_023_08246_8
crossref_primary_10_1109_TSMC_2022_3148695
crossref_primary_10_1109_ACCESS_2023_3264263
crossref_primary_10_1109_TCYB_2019_2903869
crossref_primary_10_1016_j_amc_2025_129279
crossref_primary_10_1016_j_automatica_2018_09_032
crossref_primary_10_1109_ACCESS_2021_3078179
crossref_primary_10_1109_TNNLS_2019_2944690
crossref_primary_10_1109_ACCESS_2021_3068526
crossref_primary_10_1007_s00521_022_08174_5
crossref_primary_10_1007_s12555_021_0172_3
crossref_primary_10_1016_j_automatica_2020_109102
crossref_primary_10_1109_TEC_2020_3038010
crossref_primary_10_1109_TNNLS_2019_2944459
crossref_primary_10_1109_TII_2020_2968345
crossref_primary_10_1109_TASE_2023_3348978
crossref_primary_10_1109_TAC_2018_2845707
crossref_primary_10_1109_TNNLS_2018_2881205
crossref_primary_10_1109_TNSE_2021_3114500
crossref_primary_10_1109_TVT_2022_3164945
crossref_primary_10_1002_rnc_5541
crossref_primary_10_1109_TCYB_2021_3100764
crossref_primary_10_1007_s12555_021_1066_0
crossref_primary_10_1002_rnc_4713
crossref_primary_10_1109_TNNLS_2019_2920892
crossref_primary_10_1109_TNNLS_2022_3189951
crossref_primary_10_1016_j_jfranklin_2018_09_005
crossref_primary_10_1007_s11432_019_2714_7
crossref_primary_10_1109_ACCESS_2022_3161134
crossref_primary_10_1049_iet_cta_2018_5331
crossref_primary_10_1109_TSMC_2019_2922393
crossref_primary_10_1016_j_automatica_2021_109595
crossref_primary_10_1016_j_jfranklin_2019_02_015
crossref_primary_10_1109_TNNLS_2021_3059933
crossref_primary_10_1109_TNNLS_2021_3070631
crossref_primary_10_1109_THMS_2024_3397351
crossref_primary_10_1016_j_fss_2024_109071
crossref_primary_10_1002_rnc_7710
crossref_primary_10_1016_j_apm_2024_06_024
crossref_primary_10_1002_rnc_7313
crossref_primary_10_1109_TFUZZ_2021_3093951
crossref_primary_10_1155_2021_5594053
crossref_primary_10_1002_rnc_5372
crossref_primary_10_1002_asjc_3209
crossref_primary_10_1007_s11071_024_09957_2
crossref_primary_10_1109_TSMC_2022_3199266
crossref_primary_10_1007_s11071_021_06564_3
crossref_primary_10_1109_ACCESS_2021_3069916
crossref_primary_10_1109_TMECH_2020_2975117
crossref_primary_10_1109_TFUZZ_2020_2979668
crossref_primary_10_1109_TNNLS_2020_3011044
crossref_primary_10_1002_rnc_5556
crossref_primary_10_1002_rnc_6008
crossref_primary_10_1016_j_ifacol_2020_06_053
crossref_primary_10_1016_j_neucom_2020_05_058
crossref_primary_10_1109_TIE_2024_3436632
crossref_primary_10_1109_TCYB_2018_2856747
crossref_primary_10_1109_TIE_2018_2844791
crossref_primary_10_1016_j_isatra_2024_06_008
crossref_primary_10_1109_TCYB_2019_2933700
crossref_primary_10_1016_j_jfranklin_2023_05_010
crossref_primary_10_1109_TFUZZ_2021_3089031
crossref_primary_10_1109_TNNLS_2022_3190286
crossref_primary_10_1016_j_ins_2024_120224
crossref_primary_10_1016_j_isatra_2021_02_029
crossref_primary_10_1109_TNNLS_2020_3045029
crossref_primary_10_1016_j_isatra_2024_05_054
crossref_primary_10_1002_rnc_5163
crossref_primary_10_1109_TFUZZ_2023_3290934
crossref_primary_10_1002_acs_2989
crossref_primary_10_1080_00207179_2018_1468928
crossref_primary_10_1080_00207179_2021_1939421
crossref_primary_10_1016_j_automatica_2024_111516
crossref_primary_10_1109_TMECH_2022_3175969
crossref_primary_10_1007_s11071_024_10208_7
crossref_primary_10_1109_TCYB_2021_3134819
crossref_primary_10_1109_TCSII_2023_3241609
crossref_primary_10_1109_TCYB_2019_2931770
crossref_primary_10_1109_TNNLS_2020_3026078
crossref_primary_10_1109_TCYB_2021_3072400
crossref_primary_10_1016_j_oceaneng_2022_110898
crossref_primary_10_1109_TNNLS_2021_3129816
crossref_primary_10_1016_j_mechatronics_2023_103032
crossref_primary_10_1002_rnc_4460
crossref_primary_10_1007_s12555_021_0650_7
crossref_primary_10_1049_cth2_12106
crossref_primary_10_1109_TAI_2024_3404914
crossref_primary_10_1109_TCYB_2022_3163755
crossref_primary_10_1109_TFUZZ_2020_2984998
crossref_primary_10_1109_TII_2024_3403259
crossref_primary_10_1002_rnc_4926
crossref_primary_10_1049_iet_cta_2019_0652
crossref_primary_10_1109_TCYB_2022_3192356
crossref_primary_10_1109_TCYB_2023_3259967
crossref_primary_10_1016_j_jfranklin_2020_03_021
crossref_primary_10_1109_TFUZZ_2023_3298341
crossref_primary_10_1109_TII_2021_3089143
crossref_primary_10_1109_TSMC_2022_3143359
crossref_primary_10_1109_LCSYS_2019_2919814
crossref_primary_10_1049_iet_rpg_2020_0616
crossref_primary_10_1002_rnc_5189
crossref_primary_10_1002_rnc_6675
crossref_primary_10_1109_TNNLS_2021_3118089
crossref_primary_10_1109_TNNLS_2023_3322161
crossref_primary_10_1515_ijnsns_2020_0141
crossref_primary_10_1016_j_isatra_2022_07_006
crossref_primary_10_1109_TSMC_2022_3170573
crossref_primary_10_1109_TSMC_2023_3280569
crossref_primary_10_1016_j_oceaneng_2023_115553
crossref_primary_10_1109_TCYB_2020_3032994
crossref_primary_10_1177_01423312241296968
crossref_primary_10_1109_TCYB_2021_3119066
crossref_primary_10_1109_TCYB_2019_2893645
crossref_primary_10_1109_TNNLS_2022_3141052
crossref_primary_10_1155_2022_1499685
crossref_primary_10_1109_TCYB_2021_3135893
crossref_primary_10_1109_TFUZZ_2022_3164536
crossref_primary_10_1016_j_ast_2019_105629
crossref_primary_10_1080_00207179_2021_1886327
crossref_primary_10_1109_TCYB_2022_3179897
crossref_primary_10_1109_TCYB_2024_3366177
crossref_primary_10_1109_TNNLS_2019_2927887
crossref_primary_10_1007_s11432_022_3711_1
crossref_primary_10_1109_TIE_2022_3229327
crossref_primary_10_1109_TSMC_2023_3257170
crossref_primary_10_3390_app132111923
crossref_primary_10_1109_TCYB_2025_3529867
crossref_primary_10_1109_TASE_2024_3417387
crossref_primary_10_1109_TASE_2023_3241182
crossref_primary_10_1109_TSMC_2019_2954875
crossref_primary_10_1088_1742_6596_2083_3_032029
crossref_primary_10_1115_1_4066315
crossref_primary_10_1109_TCYB_2023_3325456
crossref_primary_10_1109_TNNLS_2023_3311927
crossref_primary_10_1109_TSMC_2021_3131179
crossref_primary_10_59277_PRA_SER_A_24_3_10
crossref_primary_10_1109_TCSII_2023_3333395
crossref_primary_10_1109_TNNLS_2022_3166963
crossref_primary_10_1109_TIE_2024_3370984
crossref_primary_10_1109_TFUZZ_2019_2895560
crossref_primary_10_1109_TNNLS_2021_3085371
crossref_primary_10_1109_TNNLS_2020_3047120
crossref_primary_10_1109_TCSII_2023_3309400
crossref_primary_10_1016_j_jfranklin_2023_04_014
crossref_primary_10_1177_09596518221127510
crossref_primary_10_1109_TCYB_2024_3524242
crossref_primary_10_1002_rnc_6170
crossref_primary_10_1051_matecconf_201816001003
crossref_primary_10_1109_TFUZZ_2023_3338466
crossref_primary_10_1177_01423312221125967
crossref_primary_10_1016_j_neucom_2024_127554
crossref_primary_10_1016_j_sysconle_2018_02_010
crossref_primary_10_1016_j_ast_2020_106055
crossref_primary_10_1109_TNNLS_2021_3071094
crossref_primary_10_1109_TNNLS_2018_2878463
crossref_primary_10_1007_s11071_024_10493_2
crossref_primary_10_1109_ACCESS_2021_3076017
crossref_primary_10_23919_JSEE_2023_000098
crossref_primary_10_1002_rnc_7144
crossref_primary_10_1109_TAC_2022_3144661
crossref_primary_10_1109_TCYB_2021_3063619
crossref_primary_10_1109_TIE_2020_3026297
crossref_primary_10_1016_j_jfranklin_2021_04_042
crossref_primary_10_1016_j_isatra_2020_08_028
crossref_primary_10_1115_1_4055291
crossref_primary_10_1002_rnc_7921
crossref_primary_10_1016_j_neucom_2023_126967
crossref_primary_10_1109_ACCESS_2022_3212752
crossref_primary_10_1109_TNNLS_2021_3123361
crossref_primary_10_1109_TFUZZ_2022_3182767
crossref_primary_10_1109_TSMC_2024_3418950
crossref_primary_10_1109_ACCESS_2018_2857504
crossref_primary_10_1016_j_asr_2024_12_039
crossref_primary_10_1016_j_ins_2020_04_010
crossref_primary_10_1109_ACCESS_2020_3029522
crossref_primary_10_3934_mbe_2023770
crossref_primary_10_1016_j_ifacol_2020_12_1560
crossref_primary_10_1007_s11071_021_06304_7
crossref_primary_10_1016_j_ijmecsci_2022_107896
crossref_primary_10_1109_TITS_2022_3224424
crossref_primary_10_1109_TSMC_2022_3232699
crossref_primary_10_1016_j_neucom_2019_07_053
crossref_primary_10_1109_TIE_2021_3065835
crossref_primary_10_1002_rnc_4384
crossref_primary_10_1016_j_ijepes_2019_105792
Cites_doi 10.1109/TNNLS.2015.2508926
10.1049/iet-cta.2014.1319
10.1002/rnc.1624
10.1016/j.automatica.2016.10.011
10.1109/TAC.2015.2508741
10.1016/j.automatica.2011.08.044
10.1109/9.668834
10.1109/70.59360
10.1109/TAC.2010.2081770
10.1016/j.automatica.2008.11.017
10.1080/00207179608921830
10.1016/j.automatica.2012.05.008
10.1109/TSMCB.2012.2198813
10.1109/ROBOT.1986.1087661
10.1016/j.automatica.2015.10.049
10.1109/TAC.2003.815049
10.1109/TFUZZ.2013.2286837
10.1109/TFUZZ.2015.2418000
10.1109/TCYB.2016.2573837
10.1016/j.automatica.2013.01.042
10.1109/TII.2016.2612646
10.1016/j.automatica.2015.10.034
10.1177/1077546314534286
10.1016/0167-6911(91)90050-O
10.1109/TCYB.2013.2262935
10.1109/TNN.2010.2047115
10.1049/iet-cta.2013.0205
10.1109/TCYB.2015.2411285
10.1016/0005-1098(89)90094-0
10.1109/ACC.2002.1024914
10.1080/00207179.2011.631192
10.1109/TIE.2016.2522386
10.1016/j.automatica.2009.10.017
10.1016/j.automatica.2006.12.014
10.1109/TNNLS.2014.2302475
10.1109/TAC.2015.2480232
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2017.2727223
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 3489
ExternalDocumentID 28809715
10_1109_TNNLS_2017_2727223
8008779
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Graduate Scientific Research and Innovation Foundation of Chongqing
  grantid: CYB17048
– fundername: Technology Transformation Program of Chongqing Higher Education University
  grantid: KJZH17102
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-9bd298fc6b09ece54062ab15a1e8711c485ae86f19da3a0535fc5538ff77fef23
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 18:40:35 EDT 2025
Mon Jun 30 03:55:22 EDT 2025
Mon Jul 21 06:07:22 EDT 2025
Tue Jul 01 00:27:25 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Wed Aug 27 02:48:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-9bd298fc6b09ece54062ab15a1e8711c485ae86f19da3a0535fc5538ff77fef23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2167-1861
0000-0003-0656-1901
PMID 28809715
PQID 2074851940
PQPubID 85436
PageCount 12
ParticipantIDs ieee_primary_8008779
proquest_miscellaneous_1929887469
crossref_citationtrail_10_1109_TNNLS_2017_2727223
proquest_journals_2074851940
crossref_primary_10_1109_TNNLS_2017_2727223
pubmed_primary_28809715
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
horn (ref9) 1990
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref18
ren (ref19) 2010; 21
ref24
ref23
ref26
ref25
ref20
ref22
ref21
krstic (ref11) 1995
ref28
ref27
ref29
ge (ref7) 2003; 48
ref8
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1109/TNNLS.2015.2508926
– ident: ref31
  doi: 10.1049/iet-cta.2014.1319
– ident: ref38
  doi: 10.1002/rnc.1624
– ident: ref16
  doi: 10.1016/j.automatica.2016.10.011
– ident: ref25
  doi: 10.1109/TAC.2015.2508741
– ident: ref28
  doi: 10.1016/j.automatica.2011.08.044
– ident: ref2
  doi: 10.1109/9.668834
– year: 1990
  ident: ref9
  publication-title: Matrix Analysis
– ident: ref21
  doi: 10.1109/70.59360
– ident: ref18
  doi: 10.1109/TAC.2010.2081770
– ident: ref26
  doi: 10.1016/j.automatica.2008.11.017
– ident: ref24
  doi: 10.1080/00207179608921830
– ident: ref37
  doi: 10.1016/j.automatica.2012.05.008
– ident: ref32
  doi: 10.1109/TSMCB.2012.2198813
– ident: ref5
  doi: 10.1109/ROBOT.1986.1087661
– ident: ref30
  doi: 10.1016/j.automatica.2015.10.049
– year: 1995
  ident: ref11
  publication-title: Nonlinear and Adaptive Control Design
– volume: 48
  start-page: 1463
  year: 2003
  ident: ref7
  article-title: Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2003.815049
– ident: ref14
  doi: 10.1109/TFUZZ.2013.2286837
– ident: ref15
  doi: 10.1109/TFUZZ.2015.2418000
– ident: ref35
  doi: 10.1109/TCYB.2016.2573837
– ident: ref10
  doi: 10.1016/j.automatica.2013.01.042
– ident: ref34
  doi: 10.1109/TII.2016.2612646
– ident: ref12
  doi: 10.1016/j.automatica.2015.10.034
– ident: ref6
  doi: 10.1177/1077546314534286
– ident: ref20
  doi: 10.1016/0167-6911(91)90050-O
– ident: ref3
  doi: 10.1109/TCYB.2013.2262935
– volume: 21
  start-page: 1339
  year: 2010
  ident: ref19
  article-title: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2047115
– ident: ref4
  doi: 10.1049/iet-cta.2013.0205
– ident: ref8
  doi: 10.1109/TCYB.2015.2411285
– ident: ref23
  doi: 10.1016/0005-1098(89)90094-0
– ident: ref22
  doi: 10.1109/ACC.2002.1024914
– ident: ref27
  doi: 10.1080/00207179.2011.631192
– ident: ref1
  doi: 10.1109/TIE.2016.2522386
– ident: ref17
  doi: 10.1016/j.automatica.2009.10.017
– ident: ref36
  doi: 10.1016/j.automatica.2006.12.014
– ident: ref33
  doi: 10.1109/TNNLS.2014.2302475
– ident: ref29
  doi: 10.1109/TAC.2015.2480232
SSID ssj0000605649
Score 2.6457057
Snippet This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3478
SubjectTerms Adaptive control
Artificial neural networks
Barrier Lyapunov function (BLF)
Computer simulation
Convergence
Error analysis
error transformation
Hazards
Liapunov functions
Lyapunov methods
Neural networks
Nussbaum gain technique
prescribed tracking performance
robust adaptive neural control
Robustness
Stability
System effectiveness
Tracking control
Uncertainty
Title Prescribed Performance Control of Uncertain Euler-Lagrange Systems Subject to Full-State Constraints
URI https://ieeexplore.ieee.org/document/8008779
https://www.ncbi.nlm.nih.gov/pubmed/28809715
https://www.proquest.com/docview/2074851940
https://www.proquest.com/docview/1929887469
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbxQhFCdtT16sWj9Wq8HEm7JlYIDhaJo2jWk3JnaTvU2AeXiw2Wl2Zy7-9T6YD41R420mAwzk93j8gPdByLvQIAsXjjNhQLMyBM5wWTDMA4AU0qsQkjfyzUpfrctPG7U5IB9mXxgsk43PYJke811-04Y-HZWdVSmAmrGH5BA3boOv1nyewpGX68x2RaEFE9JsJh8Zbs9uV6vrL8mQyyxFunoUKX-OQNm1JiXE_WVJyjlW_k4387JzeUxupg4P1ibfln3nl-H7b7Ec_3dEj8jDkX_Sj4PAPCYHsH1CjqfcDnSc6iekSbYZqFE8NPTzT-cCej6YttM20jW-Z3sCetHfwY5du6-75KpAxyjoFJVSOuWhXUvTTpdlYpta2OfEFN3-KVlfXtyeX7ExIwMLUhUds74RtopBe24hALI9LZwvlCsAIS9CWSkHlY6FbZx0KXRMDApVaozGRIhCPiNH23YLLwjlwbqiqholy6pUVlqvJHApwEevGykXpJhAqcMYrjx17q7O2xZu64xpnTCtR0wX5P1c534I1vHP0icJkLnkiMWCnE7Y1-N83mM9g2MrbMkX5O38GWdiul5xW2j7fY1c2aLKLjU28XyQmbntSdRe_vmfr8gD7Fk1GBaekqNu18NrJDudf5Ol_AdhpPjU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4wAXNhgfhQ2MxA3cOXbsxEc0bSrQVki0Um9R7Ng7MDWoTS789Tw7HyDE0G6JYju2fs_PP9vvA-CdrZCF85JRnjlFU2sZxWUho8Y5J7gw0trgjbxYqtk6_byRmwP4MPrCYJlofOam4THe5Ve1bcNR2XkeAqhl-h7cx3Vf8s5bazxRYcjMVeS7PFGccpFtBi8Zps9Xy-X8WzDlyqY8XD7ykEGHo_TqLKTE_WNRillWbiecceG5OoLF0OXO3uT7tG3M1P78K5rjXcd0DI96Bko-diLzGA7c9gkcDdkdSD_ZT6AK1hmoU4yryNff7gXkojNuJ7Una3yPFgXksr1xOzovr3fBWYH0cdAJqqVwzkOamoS9Lo3UNrSwj6kpmv1TWF9dri5mtM_JQK2QSUO1qbjOvVWGaWcd8j3FS5PIMnEIemLTXJYuVz7RVSnKEDzGW4lK1fss885z8QwOt_XWvQDCrC6TPK-kSPNUaqGNFI4J7ow3qhJiAskASmH7gOWhczdF3LgwXURMi4Bp0WM6gfdjnR9duI7_lj4JgIwleywmcDpgX_Qzeo_1MhxbolM2gbfjZ5yL4YKl3Lq63RfIljUq7VRhE887mRnbHkTt5b__-QYezFaLeTH_tPzyCh5iL_POzPAUDptd686Q-jTmdZT4X4R4_B4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prescribed+Performance+Control+of+Uncertain+Euler%E2%80%93Lagrange+Systems+Subject+to+Full-State+Constraints&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhao%2C+Kai&rft.au=Song%2C+Yongduan&rft.au=Ma%2C+Tiedong&rft.au=Liu%2C+He&rft.date=2018-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=8&rft.spage=3478&rft_id=info:doi/10.1109%2FTNNLS.2017.2727223&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon