Prescribed Performance Control of Uncertain Euler-Lagrange Systems Subject to Full-State Constraints
This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 29; no. 8; pp. 3478 - 3489 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and <inline-formula> <tex-math notation="LaTeX">\mathscr C^{1} </tex-math></inline-formula> smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as <inline-formula> <tex-math notation="LaTeX">t\to \infty </tex-math></inline-formula>; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation. |
---|---|
AbstractList | This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and C1 smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as t → ∞; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation. This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and <inline-formula> <tex-math notation="LaTeX">\mathscr C^{1} </tex-math></inline-formula> smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as <inline-formula> <tex-math notation="LaTeX">t\to \infty </tex-math></inline-formula>; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation. This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as ; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation. This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as ; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation.This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as ; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation. |
Author | Zhao, Kai Ma, Tiedong He, Liu Song, Yongduan |
Author_xml | – sequence: 1 givenname: Kai orcidid: 0000-0003-0656-1901 surname: Zhao fullname: Zhao, Kai email: zhaokai@cqu.edu.cn organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, and School of Automation, Chongqing University, Chongqing, China – sequence: 2 givenname: Yongduan orcidid: 0000-0002-2167-1861 surname: Song fullname: Song, Yongduan email: ydsong@cqu.edu.cn organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, and School of Automation, Chongqing University, Chongqing, China – sequence: 3 givenname: Tiedong surname: Ma fullname: Ma, Tiedong email: tdma@cqu.edu.cn organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, and School of Automation, Chongqing University, Chongqing, China – sequence: 4 givenname: Liu surname: He fullname: He, Liu email: tony_he88@126.com organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, and School of Automation, Chongqing University, Chongqing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28809715$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9P5CAYxonRrH_WL6CJIdmLl45AS4HjZqKryURNRpO9EUpfTCdtcYEe5tvLOLNz8CAcgOT3PC95nlN0OPoRELqgZEYpUTcvj4-L5YwRKmZM5M3KA3TCaM0KVkp5uL-Lv8foPMYVyasmvK7UD3TMpCRKUH6C2ucA0YaugRY_Q3A-DGa0gOd-TMH32Dv8mt8hmW7Et1MPoViYt2DGN8DLdUwwRLycmhXYhJPHd1PfF8tk0qdDTCHLUvyJjpzpI5zvzjP0enf7Mr8vFk9_Hua_F4UtOU2FalqmpLN1QxRY4BWpmWkoNxSkoNRWkhuQtaOqNaUhvOTOcl5K54Rw4Fh5hq63vu_B_5sgJj100ULfmxH8FDVV2V-KqlYZ_fUFXfkpjPl3mhGRJ1FVkUxd7aipGaDV76EbTFjr__llgG0BG3yMAdweoURvetKfPelNT3rXUxbJLyLb5ci6TeSm67-XXm6lHQDsZ0lCpBCq_AC9raAf |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1007_s11071_023_08246_8 crossref_primary_10_1109_TSMC_2022_3148695 crossref_primary_10_1109_ACCESS_2023_3264263 crossref_primary_10_1109_TCYB_2019_2903869 crossref_primary_10_1016_j_amc_2025_129279 crossref_primary_10_1016_j_automatica_2018_09_032 crossref_primary_10_1109_ACCESS_2021_3078179 crossref_primary_10_1109_TNNLS_2019_2944690 crossref_primary_10_1109_ACCESS_2021_3068526 crossref_primary_10_1007_s00521_022_08174_5 crossref_primary_10_1007_s12555_021_0172_3 crossref_primary_10_1016_j_automatica_2020_109102 crossref_primary_10_1109_TEC_2020_3038010 crossref_primary_10_1109_TNNLS_2019_2944459 crossref_primary_10_1109_TII_2020_2968345 crossref_primary_10_1109_TASE_2023_3348978 crossref_primary_10_1109_TAC_2018_2845707 crossref_primary_10_1109_TNNLS_2018_2881205 crossref_primary_10_1109_TNSE_2021_3114500 crossref_primary_10_1109_TVT_2022_3164945 crossref_primary_10_1002_rnc_5541 crossref_primary_10_1109_TCYB_2021_3100764 crossref_primary_10_1007_s12555_021_1066_0 crossref_primary_10_1002_rnc_4713 crossref_primary_10_1109_TNNLS_2019_2920892 crossref_primary_10_1109_TNNLS_2022_3189951 crossref_primary_10_1016_j_jfranklin_2018_09_005 crossref_primary_10_1007_s11432_019_2714_7 crossref_primary_10_1109_ACCESS_2022_3161134 crossref_primary_10_1049_iet_cta_2018_5331 crossref_primary_10_1109_TSMC_2019_2922393 crossref_primary_10_1016_j_automatica_2021_109595 crossref_primary_10_1016_j_jfranklin_2019_02_015 crossref_primary_10_1109_TNNLS_2021_3059933 crossref_primary_10_1109_TNNLS_2021_3070631 crossref_primary_10_1109_THMS_2024_3397351 crossref_primary_10_1016_j_fss_2024_109071 crossref_primary_10_1002_rnc_7710 crossref_primary_10_1016_j_apm_2024_06_024 crossref_primary_10_1002_rnc_7313 crossref_primary_10_1109_TFUZZ_2021_3093951 crossref_primary_10_1155_2021_5594053 crossref_primary_10_1002_rnc_5372 crossref_primary_10_1002_asjc_3209 crossref_primary_10_1007_s11071_024_09957_2 crossref_primary_10_1109_TSMC_2022_3199266 crossref_primary_10_1007_s11071_021_06564_3 crossref_primary_10_1109_ACCESS_2021_3069916 crossref_primary_10_1109_TMECH_2020_2975117 crossref_primary_10_1109_TFUZZ_2020_2979668 crossref_primary_10_1109_TNNLS_2020_3011044 crossref_primary_10_1002_rnc_5556 crossref_primary_10_1002_rnc_6008 crossref_primary_10_1016_j_ifacol_2020_06_053 crossref_primary_10_1016_j_neucom_2020_05_058 crossref_primary_10_1109_TIE_2024_3436632 crossref_primary_10_1109_TCYB_2018_2856747 crossref_primary_10_1109_TIE_2018_2844791 crossref_primary_10_1016_j_isatra_2024_06_008 crossref_primary_10_1109_TCYB_2019_2933700 crossref_primary_10_1016_j_jfranklin_2023_05_010 crossref_primary_10_1109_TFUZZ_2021_3089031 crossref_primary_10_1109_TNNLS_2022_3190286 crossref_primary_10_1016_j_ins_2024_120224 crossref_primary_10_1016_j_isatra_2021_02_029 crossref_primary_10_1109_TNNLS_2020_3045029 crossref_primary_10_1016_j_isatra_2024_05_054 crossref_primary_10_1002_rnc_5163 crossref_primary_10_1109_TFUZZ_2023_3290934 crossref_primary_10_1002_acs_2989 crossref_primary_10_1080_00207179_2018_1468928 crossref_primary_10_1080_00207179_2021_1939421 crossref_primary_10_1016_j_automatica_2024_111516 crossref_primary_10_1109_TMECH_2022_3175969 crossref_primary_10_1007_s11071_024_10208_7 crossref_primary_10_1109_TCYB_2021_3134819 crossref_primary_10_1109_TCSII_2023_3241609 crossref_primary_10_1109_TCYB_2019_2931770 crossref_primary_10_1109_TNNLS_2020_3026078 crossref_primary_10_1109_TCYB_2021_3072400 crossref_primary_10_1016_j_oceaneng_2022_110898 crossref_primary_10_1109_TNNLS_2021_3129816 crossref_primary_10_1016_j_mechatronics_2023_103032 crossref_primary_10_1002_rnc_4460 crossref_primary_10_1007_s12555_021_0650_7 crossref_primary_10_1049_cth2_12106 crossref_primary_10_1109_TAI_2024_3404914 crossref_primary_10_1109_TCYB_2022_3163755 crossref_primary_10_1109_TFUZZ_2020_2984998 crossref_primary_10_1109_TII_2024_3403259 crossref_primary_10_1002_rnc_4926 crossref_primary_10_1049_iet_cta_2019_0652 crossref_primary_10_1109_TCYB_2022_3192356 crossref_primary_10_1109_TCYB_2023_3259967 crossref_primary_10_1016_j_jfranklin_2020_03_021 crossref_primary_10_1109_TFUZZ_2023_3298341 crossref_primary_10_1109_TII_2021_3089143 crossref_primary_10_1109_TSMC_2022_3143359 crossref_primary_10_1109_LCSYS_2019_2919814 crossref_primary_10_1049_iet_rpg_2020_0616 crossref_primary_10_1002_rnc_5189 crossref_primary_10_1002_rnc_6675 crossref_primary_10_1109_TNNLS_2021_3118089 crossref_primary_10_1109_TNNLS_2023_3322161 crossref_primary_10_1515_ijnsns_2020_0141 crossref_primary_10_1016_j_isatra_2022_07_006 crossref_primary_10_1109_TSMC_2022_3170573 crossref_primary_10_1109_TSMC_2023_3280569 crossref_primary_10_1016_j_oceaneng_2023_115553 crossref_primary_10_1109_TCYB_2020_3032994 crossref_primary_10_1177_01423312241296968 crossref_primary_10_1109_TCYB_2021_3119066 crossref_primary_10_1109_TCYB_2019_2893645 crossref_primary_10_1109_TNNLS_2022_3141052 crossref_primary_10_1155_2022_1499685 crossref_primary_10_1109_TCYB_2021_3135893 crossref_primary_10_1109_TFUZZ_2022_3164536 crossref_primary_10_1016_j_ast_2019_105629 crossref_primary_10_1080_00207179_2021_1886327 crossref_primary_10_1109_TCYB_2022_3179897 crossref_primary_10_1109_TCYB_2024_3366177 crossref_primary_10_1109_TNNLS_2019_2927887 crossref_primary_10_1007_s11432_022_3711_1 crossref_primary_10_1109_TIE_2022_3229327 crossref_primary_10_1109_TSMC_2023_3257170 crossref_primary_10_3390_app132111923 crossref_primary_10_1109_TCYB_2025_3529867 crossref_primary_10_1109_TASE_2024_3417387 crossref_primary_10_1109_TASE_2023_3241182 crossref_primary_10_1109_TSMC_2019_2954875 crossref_primary_10_1088_1742_6596_2083_3_032029 crossref_primary_10_1115_1_4066315 crossref_primary_10_1109_TCYB_2023_3325456 crossref_primary_10_1109_TNNLS_2023_3311927 crossref_primary_10_1109_TSMC_2021_3131179 crossref_primary_10_59277_PRA_SER_A_24_3_10 crossref_primary_10_1109_TCSII_2023_3333395 crossref_primary_10_1109_TNNLS_2022_3166963 crossref_primary_10_1109_TIE_2024_3370984 crossref_primary_10_1109_TFUZZ_2019_2895560 crossref_primary_10_1109_TNNLS_2021_3085371 crossref_primary_10_1109_TNNLS_2020_3047120 crossref_primary_10_1109_TCSII_2023_3309400 crossref_primary_10_1016_j_jfranklin_2023_04_014 crossref_primary_10_1177_09596518221127510 crossref_primary_10_1109_TCYB_2024_3524242 crossref_primary_10_1002_rnc_6170 crossref_primary_10_1051_matecconf_201816001003 crossref_primary_10_1109_TFUZZ_2023_3338466 crossref_primary_10_1177_01423312221125967 crossref_primary_10_1016_j_neucom_2024_127554 crossref_primary_10_1016_j_sysconle_2018_02_010 crossref_primary_10_1016_j_ast_2020_106055 crossref_primary_10_1109_TNNLS_2021_3071094 crossref_primary_10_1109_TNNLS_2018_2878463 crossref_primary_10_1007_s11071_024_10493_2 crossref_primary_10_1109_ACCESS_2021_3076017 crossref_primary_10_23919_JSEE_2023_000098 crossref_primary_10_1002_rnc_7144 crossref_primary_10_1109_TAC_2022_3144661 crossref_primary_10_1109_TCYB_2021_3063619 crossref_primary_10_1109_TIE_2020_3026297 crossref_primary_10_1016_j_jfranklin_2021_04_042 crossref_primary_10_1016_j_isatra_2020_08_028 crossref_primary_10_1115_1_4055291 crossref_primary_10_1002_rnc_7921 crossref_primary_10_1016_j_neucom_2023_126967 crossref_primary_10_1109_ACCESS_2022_3212752 crossref_primary_10_1109_TNNLS_2021_3123361 crossref_primary_10_1109_TFUZZ_2022_3182767 crossref_primary_10_1109_TSMC_2024_3418950 crossref_primary_10_1109_ACCESS_2018_2857504 crossref_primary_10_1016_j_asr_2024_12_039 crossref_primary_10_1016_j_ins_2020_04_010 crossref_primary_10_1109_ACCESS_2020_3029522 crossref_primary_10_3934_mbe_2023770 crossref_primary_10_1016_j_ifacol_2020_12_1560 crossref_primary_10_1007_s11071_021_06304_7 crossref_primary_10_1016_j_ijmecsci_2022_107896 crossref_primary_10_1109_TITS_2022_3224424 crossref_primary_10_1109_TSMC_2022_3232699 crossref_primary_10_1016_j_neucom_2019_07_053 crossref_primary_10_1109_TIE_2021_3065835 crossref_primary_10_1002_rnc_4384 crossref_primary_10_1016_j_ijepes_2019_105792 |
Cites_doi | 10.1109/TNNLS.2015.2508926 10.1049/iet-cta.2014.1319 10.1002/rnc.1624 10.1016/j.automatica.2016.10.011 10.1109/TAC.2015.2508741 10.1016/j.automatica.2011.08.044 10.1109/9.668834 10.1109/70.59360 10.1109/TAC.2010.2081770 10.1016/j.automatica.2008.11.017 10.1080/00207179608921830 10.1016/j.automatica.2012.05.008 10.1109/TSMCB.2012.2198813 10.1109/ROBOT.1986.1087661 10.1016/j.automatica.2015.10.049 10.1109/TAC.2003.815049 10.1109/TFUZZ.2013.2286837 10.1109/TFUZZ.2015.2418000 10.1109/TCYB.2016.2573837 10.1016/j.automatica.2013.01.042 10.1109/TII.2016.2612646 10.1016/j.automatica.2015.10.034 10.1177/1077546314534286 10.1016/0167-6911(91)90050-O 10.1109/TCYB.2013.2262935 10.1109/TNN.2010.2047115 10.1049/iet-cta.2013.0205 10.1109/TCYB.2015.2411285 10.1016/0005-1098(89)90094-0 10.1109/ACC.2002.1024914 10.1080/00207179.2011.631192 10.1109/TIE.2016.2522386 10.1016/j.automatica.2009.10.017 10.1016/j.automatica.2006.12.014 10.1109/TNNLS.2014.2302475 10.1109/TAC.2015.2480232 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2017.2727223 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 3489 |
ExternalDocumentID | 28809715 10_1109_TNNLS_2017_2727223 8008779 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Graduate Scientific Research and Innovation Foundation of Chongqing grantid: CYB17048 – fundername: Technology Transformation Program of Chongqing Higher Education University grantid: KJZH17102 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-9bd298fc6b09ece54062ab15a1e8711c485ae86f19da3a0535fc5538ff77fef23 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Jul 10 18:40:35 EDT 2025 Mon Jun 30 03:55:22 EDT 2025 Mon Jul 21 06:07:22 EDT 2025 Tue Jul 01 00:27:25 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Wed Aug 27 02:48:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-9bd298fc6b09ece54062ab15a1e8711c485ae86f19da3a0535fc5538ff77fef23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2167-1861 0000-0003-0656-1901 |
PMID | 28809715 |
PQID | 2074851940 |
PQPubID | 85436 |
PageCount | 12 |
ParticipantIDs | ieee_primary_8008779 proquest_miscellaneous_1929887469 crossref_citationtrail_10_1109_TNNLS_2017_2727223 proquest_journals_2074851940 crossref_primary_10_1109_TNNLS_2017_2727223 pubmed_primary_28809715 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 horn (ref9) 1990 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref32 ref10 ref2 ref1 ref17 ref38 ref16 ref18 ren (ref19) 2010; 21 ref24 ref23 ref26 ref25 ref20 ref22 ref21 krstic (ref11) 1995 ref28 ref27 ref29 ge (ref7) 2003; 48 ref8 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref13 doi: 10.1109/TNNLS.2015.2508926 – ident: ref31 doi: 10.1049/iet-cta.2014.1319 – ident: ref38 doi: 10.1002/rnc.1624 – ident: ref16 doi: 10.1016/j.automatica.2016.10.011 – ident: ref25 doi: 10.1109/TAC.2015.2508741 – ident: ref28 doi: 10.1016/j.automatica.2011.08.044 – ident: ref2 doi: 10.1109/9.668834 – year: 1990 ident: ref9 publication-title: Matrix Analysis – ident: ref21 doi: 10.1109/70.59360 – ident: ref18 doi: 10.1109/TAC.2010.2081770 – ident: ref26 doi: 10.1016/j.automatica.2008.11.017 – ident: ref24 doi: 10.1080/00207179608921830 – ident: ref37 doi: 10.1016/j.automatica.2012.05.008 – ident: ref32 doi: 10.1109/TSMCB.2012.2198813 – ident: ref5 doi: 10.1109/ROBOT.1986.1087661 – ident: ref30 doi: 10.1016/j.automatica.2015.10.049 – year: 1995 ident: ref11 publication-title: Nonlinear and Adaptive Control Design – volume: 48 start-page: 1463 year: 2003 ident: ref7 article-title: Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2003.815049 – ident: ref14 doi: 10.1109/TFUZZ.2013.2286837 – ident: ref15 doi: 10.1109/TFUZZ.2015.2418000 – ident: ref35 doi: 10.1109/TCYB.2016.2573837 – ident: ref10 doi: 10.1016/j.automatica.2013.01.042 – ident: ref34 doi: 10.1109/TII.2016.2612646 – ident: ref12 doi: 10.1016/j.automatica.2015.10.034 – ident: ref6 doi: 10.1177/1077546314534286 – ident: ref20 doi: 10.1016/0167-6911(91)90050-O – ident: ref3 doi: 10.1109/TCYB.2013.2262935 – volume: 21 start-page: 1339 year: 2010 ident: ref19 article-title: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2047115 – ident: ref4 doi: 10.1049/iet-cta.2013.0205 – ident: ref8 doi: 10.1109/TCYB.2015.2411285 – ident: ref23 doi: 10.1016/0005-1098(89)90094-0 – ident: ref22 doi: 10.1109/ACC.2002.1024914 – ident: ref27 doi: 10.1080/00207179.2011.631192 – ident: ref1 doi: 10.1109/TIE.2016.2522386 – ident: ref17 doi: 10.1016/j.automatica.2009.10.017 – ident: ref36 doi: 10.1016/j.automatica.2006.12.014 – ident: ref33 doi: 10.1109/TNNLS.2014.2302475 – ident: ref29 doi: 10.1109/TAC.2015.2480232 |
SSID | ssj0000605649 |
Score | 2.6457057 |
Snippet | This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3478 |
SubjectTerms | Adaptive control Artificial neural networks Barrier Lyapunov function (BLF) Computer simulation Convergence Error analysis error transformation Hazards Liapunov functions Lyapunov methods Neural networks Nussbaum gain technique prescribed tracking performance robust adaptive neural control Robustness Stability System effectiveness Tracking control Uncertainty |
Title | Prescribed Performance Control of Uncertain Euler-Lagrange Systems Subject to Full-State Constraints |
URI | https://ieeexplore.ieee.org/document/8008779 https://www.ncbi.nlm.nih.gov/pubmed/28809715 https://www.proquest.com/docview/2074851940 https://www.proquest.com/docview/1929887469 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbxQhFCdtT16sWj9Wq8HEm7JlYIDhaJo2jWk3JnaTvU2AeXiw2Wl2Zy7-9T6YD41R420mAwzk93j8gPdByLvQIAsXjjNhQLMyBM5wWTDMA4AU0qsQkjfyzUpfrctPG7U5IB9mXxgsk43PYJke811-04Y-HZWdVSmAmrGH5BA3boOv1nyewpGX68x2RaEFE9JsJh8Zbs9uV6vrL8mQyyxFunoUKX-OQNm1JiXE_WVJyjlW_k4387JzeUxupg4P1ibfln3nl-H7b7Ec_3dEj8jDkX_Sj4PAPCYHsH1CjqfcDnSc6iekSbYZqFE8NPTzT-cCej6YttM20jW-Z3sCetHfwY5du6-75KpAxyjoFJVSOuWhXUvTTpdlYpta2OfEFN3-KVlfXtyeX7ExIwMLUhUds74RtopBe24hALI9LZwvlCsAIS9CWSkHlY6FbZx0KXRMDApVaozGRIhCPiNH23YLLwjlwbqiqholy6pUVlqvJHApwEevGykXpJhAqcMYrjx17q7O2xZu64xpnTCtR0wX5P1c534I1vHP0icJkLnkiMWCnE7Y1-N83mM9g2MrbMkX5O38GWdiul5xW2j7fY1c2aLKLjU28XyQmbntSdRe_vmfr8gD7Fk1GBaekqNu18NrJDudf5Ol_AdhpPjU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4wAXNhgfhQ2MxA3cOXbsxEc0bSrQVki0Um9R7Ng7MDWoTS789Tw7HyDE0G6JYju2fs_PP9vvA-CdrZCF85JRnjlFU2sZxWUho8Y5J7gw0trgjbxYqtk6_byRmwP4MPrCYJlofOam4THe5Ve1bcNR2XkeAqhl-h7cx3Vf8s5bazxRYcjMVeS7PFGccpFtBi8Zps9Xy-X8WzDlyqY8XD7ykEGHo_TqLKTE_WNRillWbiecceG5OoLF0OXO3uT7tG3M1P78K5rjXcd0DI96Bko-diLzGA7c9gkcDdkdSD_ZT6AK1hmoU4yryNff7gXkojNuJ7Una3yPFgXksr1xOzovr3fBWYH0cdAJqqVwzkOamoS9Lo3UNrSwj6kpmv1TWF9dri5mtM_JQK2QSUO1qbjOvVWGaWcd8j3FS5PIMnEIemLTXJYuVz7RVSnKEDzGW4lK1fss885z8QwOt_XWvQDCrC6TPK-kSPNUaqGNFI4J7ow3qhJiAskASmH7gOWhczdF3LgwXURMi4Bp0WM6gfdjnR9duI7_lj4JgIwleywmcDpgX_Qzeo_1MhxbolM2gbfjZ5yL4YKl3Lq63RfIljUq7VRhE887mRnbHkTt5b__-QYezFaLeTH_tPzyCh5iL_POzPAUDptd686Q-jTmdZT4X4R4_B4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prescribed+Performance+Control+of+Uncertain+Euler%E2%80%93Lagrange+Systems+Subject+to+Full-State+Constraints&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhao%2C+Kai&rft.au=Song%2C+Yongduan&rft.au=Ma%2C+Tiedong&rft.au=Liu%2C+He&rft.date=2018-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=8&rft.spage=3478&rft_id=info:doi/10.1109%2FTNNLS.2017.2727223&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |