Prescribed Performance Control of Uncertain Euler-Lagrange Systems Subject to Full-State Constraints

This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 29; no. 8; pp. 3478 - 3489
Main Authors Zhao, Kai, Song, Yongduan, Ma, Tiedong, He, Liu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and <inline-formula> <tex-math notation="LaTeX">\mathscr C^{1} </tex-math></inline-formula> smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as <inline-formula> <tex-math notation="LaTeX">t\to \infty </tex-math></inline-formula>; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2017.2727223