Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation

We investigate two crucial and closely-related aspects of CNNs for optical flow estimation: models and training. First, we design a compact but effective CNN model, called PWC-Net, according to simple and well-established principles: pyramidal processing, warping, and cost volume processing. PWC-Net...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 42; no. 6; pp. 1408 - 1423
Main Authors Sun, Deqing, Yang, Xiaodong, Liu, Ming-Yu, Kautz, Jan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigate two crucial and closely-related aspects of CNNs for optical flow estimation: models and training. First, we design a compact but effective CNN model, called PWC-Net, according to simple and well-established principles: pyramidal processing, warping, and cost volume processing. PWC-Net is 17 times smaller in size, 2 times faster in inference, and 11 percent more accurate on Sintel final than the recent FlowNet2 model. It is the winning entry in the optical flow competition of the robust vision challenge. Next, we experimentally analyze the sources of our performance gains. In particular, we use the same training procedure for PWC-Net to retrain FlowNetC, a sub-network of FlowNet2. The retrained FlowNetC is 56 percent more accurate on Sintel final than the previously trained one and even 5 percent more accurate than the FlowNet2 model. We further improve the training procedure and increase the accuracy of PWC-Net on Sintel by 10 percent and on KITTI 2012 and 2015 by 20 percent. Our newly trained model parameters and training protocols are available on https://github.com/NVlabs/PWC-Net .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2019.2894353