Autoencoder in Autoencoder Networks
Modeling complex correlations on multiview data is still challenging, especially for high-dimensional features with possible noise. To address this issue, we propose a novel unsupervised multiview representation learning (UMRL) algorithm, termed autoencoder in autoencoder networks (AE2-Nets). The pr...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 35; no. 2; pp. 2263 - 2275 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2022.3189239 |
Cover
Loading…
Summary: | Modeling complex correlations on multiview data is still challenging, especially for high-dimensional features with possible noise. To address this issue, we propose a novel unsupervised multiview representation learning (UMRL) algorithm, termed autoencoder in autoencoder networks (AE2-Nets). The proposed framework effectively encodes information from high-dimensional heterogeneous data into a compact and informative representation with the proposed bidirectional encoding strategy. Specifically, the proposed AE2-Nets conduct encoding in two directions: the inner-AE-networks extract view-specific intrinsic information (forward encoding), while the outer-AE-networks integrate this view-specific intrinsic information from different views into a latent representation (backward encoding). For the nested architecture, we further provide a probabilistic explanation and extension from hierarchical variational autoencoder. The forward-backward strategy flexibly addresses high-dimensional (noisy) features within each view and encodes complementarity across multiple views in a unified framework. Extensive results on benchmark datasets validate the advantages compared to the state-of-the-art algorithms. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2022.3189239 |