Autoencoder in Autoencoder Networks

Modeling complex correlations on multiview data is still challenging, especially for high-dimensional features with possible noise. To address this issue, we propose a novel unsupervised multiview representation learning (UMRL) algorithm, termed autoencoder in autoencoder networks (AE2-Nets). The pr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 2; pp. 2263 - 2275
Main Authors Zhang, Changqing, Geng, Yu, Han, Zongbo, Liu, Yeqing, Fu, Huazhu, Hu, Qinghua
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2022.3189239

Cover

Loading…
More Information
Summary:Modeling complex correlations on multiview data is still challenging, especially for high-dimensional features with possible noise. To address this issue, we propose a novel unsupervised multiview representation learning (UMRL) algorithm, termed autoencoder in autoencoder networks (AE2-Nets). The proposed framework effectively encodes information from high-dimensional heterogeneous data into a compact and informative representation with the proposed bidirectional encoding strategy. Specifically, the proposed AE2-Nets conduct encoding in two directions: the inner-AE-networks extract view-specific intrinsic information (forward encoding), while the outer-AE-networks integrate this view-specific intrinsic information from different views into a latent representation (backward encoding). For the nested architecture, we further provide a probabilistic explanation and extension from hierarchical variational autoencoder. The forward-backward strategy flexibly addresses high-dimensional (noisy) features within each view and encodes complementarity across multiple views in a unified framework. Extensive results on benchmark datasets validate the advantages compared to the state-of-the-art algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2022.3189239