Self-emulsifying Drug Delivery Systems: Concept to Applications, Regulatory Issues, Recent Patents, Current Challenges and Future Directions

Self-emulsifying drug delivery systems (SEDDS) can increase the solubility and bioavailability of poorly soluble drugs. The inability of 35% to 40% of new pharmaceuticals to dissolve in water presents a serious challenge for the pharmaceutical industry. As a result, there must be dosage proportional...

Full description

Saved in:
Bibliographic Details
Published inCurrent pharmaceutical biotechnology Vol. 26; no. 3; p. 341
Main Authors Maharana, Rajib Lochan, Swain, Suryakanta, Mahapatra, Santosh Kumar, Jena, Bikash Ranjan
Format Journal Article
LanguageEnglish
Published Netherlands 01.01.2025
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Self-emulsifying drug delivery systems (SEDDS) can increase the solubility and bioavailability of poorly soluble drugs. The inability of 35% to 40% of new pharmaceuticals to dissolve in water presents a serious challenge for the pharmaceutical industry. As a result, there must be dosage proportionality, considerable intra- and inter-subject variability, poor solubility, and limited lung bioavailability. As a result, it is critical that drugs intended for oral administration be highly soluble. This can be improved through a variety of means, including salt generation and the facilitation of solid and complicated dispersion. Surfactants, co-surfactants, and cosolvents may occasionally be found in SEDDS or isotropic blends. Lipophilic drugs, whose absorption is limited by their dissolution rate, have been used to demonstrate the effectiveness of various formulations and techniques. These particles can form microemulsions and suitable oilin- water emulsions with minimal agitation and dilution by the water phase as they pass through the gastrointestinal tract. This study summarises the numerous advances, biopharmaceutical components, variations, production techniques, characterisation approaches, limitations, and opportunities for SEDDS. With this context in mind, this review compiles a current account of biopharmaceutical advancements, such as the application of quality by design (QbD) methodologies to optimise drug formulations in different excipients with controllable ratios, the presence of regulatory roadblocks to progress, and the future consequences of SEDDS, encompassing composition, evaluation, diverse dosage forms, and innovative techniques for in-vitro converting liquid SEDDS to solid forms.
ISSN:1873-4316
DOI:10.2174/0113892010296223240612050639