Complex-Valued Discrete-Time Neural Dynamics for Perturbed Time-Dependent Complex Quadratic Programming With Applications
It has been reported that some specially designed recurrent neural networks and their related neural dynamics are efficient for solving quadratic programming (QP) problems in the real domain. A complex-valued QP problem is generated if its variable vector is composed of the magnitude and phase infor...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 31; no. 9; pp. 3555 - 3569 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2019.2944992 |
Cover
Loading…
Abstract | It has been reported that some specially designed recurrent neural networks and their related neural dynamics are efficient for solving quadratic programming (QP) problems in the real domain. A complex-valued QP problem is generated if its variable vector is composed of the magnitude and phase information, which is often depicted in a time-dependent form. Given the important role that complex-valued problems play in cybernetics and engineering, computational models with high accuracy and strong robustness are urgently needed, especially for time-dependent problems. However, the research on the online solution of time-dependent complex-valued problems has been much less investigated compared to time-dependent real-valued problems. In this article, to solve the online time-dependent complex-valued QP problems subject to linear constraints, two new discrete-time neural dynamics models, which can achieve global convergence performance in the presence of perturbations with the provided theoretical analyses, are proposed and investigated. In addition, the second proposed model is developed to eliminate the operation of explicit matrix inversion by introducing the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Moreover, computer simulation results and applications in robotics and filters are provided to illustrate the feasibility and superiority of the proposed models in comparison with the existing solutions. |
---|---|
AbstractList | It has been reported that some specially designed recurrent neural networks and their related neural dynamics are efficient for solving quadratic programming (QP) problems in the real domain. A complex-valued QP problem is generated if its variable vector is composed of the magnitude and phase information, which is often depicted in a time-dependent form. Given the important role that complex-valued problems play in cybernetics and engineering, computational models with high accuracy and strong robustness are urgently needed, especially for time-dependent problems. However, the research on the online solution of time-dependent complex-valued problems has been much less investigated compared to time-dependent real-valued problems. In this article, to solve the online time-dependent complex-valued QP problems subject to linear constraints, two new discrete-time neural dynamics models, which can achieve global convergence performance in the presence of perturbations with the provided theoretical analyses, are proposed and investigated. In addition, the second proposed model is developed to eliminate the operation of explicit matrix inversion by introducing the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. Moreover, computer simulation results and applications in robotics and filters are provided to illustrate the feasibility and superiority of the proposed models in comparison with the existing solutions. It has been reported that some specially designed recurrent neural networks and their related neural dynamics are efficient for solving quadratic programming (QP) problems in the real domain. A complex-valued QP problem is generated if its variable vector is composed of the magnitude and phase information, which is often depicted in a time-dependent form. Given the important role that complex-valued problems play in cybernetics and engineering, computational models with high accuracy and strong robustness are urgently needed, especially for time-dependent problems. However, the research on the online solution of time-dependent complex-valued problems has been much less investigated compared to time-dependent real-valued problems. In this article, to solve the online time-dependent complex-valued QP problems subject to linear constraints, two new discrete-time neural dynamics models, which can achieve global convergence performance in the presence of perturbations with the provided theoretical analyses, are proposed and investigated. In addition, the second proposed model is developed to eliminate the operation of explicit matrix inversion by introducing the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Moreover, computer simulation results and applications in robotics and filters are provided to illustrate the feasibility and superiority of the proposed models in comparison with the existing solutions.It has been reported that some specially designed recurrent neural networks and their related neural dynamics are efficient for solving quadratic programming (QP) problems in the real domain. A complex-valued QP problem is generated if its variable vector is composed of the magnitude and phase information, which is often depicted in a time-dependent form. Given the important role that complex-valued problems play in cybernetics and engineering, computational models with high accuracy and strong robustness are urgently needed, especially for time-dependent problems. However, the research on the online solution of time-dependent complex-valued problems has been much less investigated compared to time-dependent real-valued problems. In this article, to solve the online time-dependent complex-valued QP problems subject to linear constraints, two new discrete-time neural dynamics models, which can achieve global convergence performance in the presence of perturbations with the provided theoretical analyses, are proposed and investigated. In addition, the second proposed model is developed to eliminate the operation of explicit matrix inversion by introducing the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Moreover, computer simulation results and applications in robotics and filters are provided to illustrate the feasibility and superiority of the proposed models in comparison with the existing solutions. |
Author | Wang, Yaonan Jin, Long Zhang, Jiliang Xiao, Lin Qi, Yimeng |
Author_xml | – sequence: 1 givenname: Yimeng surname: Qi fullname: Qi, Yimeng email: ymqi0421@foxmail.com organization: School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 2 givenname: Long orcidid: 0000-0002-5329-5098 surname: Jin fullname: Jin, Long email: longjin@ieee.org organization: School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 3 givenname: Yaonan orcidid: 0000-0002-0519-6458 surname: Wang fullname: Wang, Yaonan organization: College of Electrical and Information Engineering, Hunan University, Changsha, China – sequence: 4 givenname: Lin orcidid: 0000-0003-3172-3490 surname: Xiao fullname: Xiao, Lin organization: College of Computer Science and Electrical Engineering, Hunan Normal University, Changsha, China – sequence: 5 givenname: Jiliang orcidid: 0000-0003-3750-6841 surname: Zhang fullname: Zhang, Jiliang organization: Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31722489$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1UREvpHwAJWeLCJYu_ktjHapcvabUUsXzcLCeZFFeJndqOxP57vN1lDz0wF480zzsznvc5OnPeAUIvKVlQStS77Waz_rZghKoFU0IoxZ6gC0YrVjAu5dkpr3-do6sY70iOipSVUM_QOac1Y0KqC7Rb-nEa4E_xwwwzdHhlYxsgQbG1I-ANzMEMeLVzZrRtxL0P-AZCmkOT2T1SrGAC14FL-NgJf51NF0yyLb4J_jaYcbTuFv-06Te-nqbBtrnmXXyBnvZmiHB1fC_R9w_vt8tPxfrLx8_L63XR8pKmQjZMcSCGlrwVkvREyYbyTohStQ2RinKiiJBNV9dlI7qOAqsp7QSrZG-oIfwSvT30nYK_nyEmPeY_wjAYB36OmnEqyqqsucjom0fonZ-Dy9tpJriqCWd1nanXR2puRuj0FOxowk7_O2oG2AFog48xQH9CKNF78_SDeXpvnj6al0Xykai16eFSKRg7_F_66iC1AHCaJWUu57X_As0Apo4 |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TCYB_2021_3051261 crossref_primary_10_1016_j_asoc_2022_109209 crossref_primary_10_1109_TNNLS_2020_2963998 crossref_primary_10_1016_j_asoc_2025_113030 crossref_primary_10_1016_j_neucom_2022_01_018 crossref_primary_10_1109_TII_2022_3210255 crossref_primary_10_1016_j_engappai_2021_104306 crossref_primary_10_1109_TII_2020_3047959 crossref_primary_10_1007_s10489_023_04732_z crossref_primary_10_1109_ACCESS_2020_3045185 crossref_primary_10_1109_TIE_2021_3062257 crossref_primary_10_1109_TNNLS_2021_3095122 crossref_primary_10_1109_TSMC_2021_3115555 crossref_primary_10_1016_j_measurement_2020_108137 crossref_primary_10_1109_TNNLS_2020_3041364 crossref_primary_10_1016_j_asoc_2021_107514 crossref_primary_10_1016_j_ins_2023_118963 crossref_primary_10_1109_ACCESS_2020_2991726 crossref_primary_10_1016_j_apm_2021_03_021 crossref_primary_10_1016_j_neunet_2022_03_010 crossref_primary_10_1007_s10462_022_10164_x crossref_primary_10_1016_j_chaos_2022_112674 crossref_primary_10_1016_j_neucom_2022_11_071 crossref_primary_10_1109_TIE_2020_3007099 crossref_primary_10_1016_j_neunet_2021_02_002 crossref_primary_10_3390_rs15235555 crossref_primary_10_1007_s11071_021_06233_5 crossref_primary_10_1016_j_ins_2022_12_090 crossref_primary_10_1109_TIE_2023_3273253 crossref_primary_10_1109_TNNLS_2022_3230898 crossref_primary_10_1016_j_neucom_2019_10_080 crossref_primary_10_1016_j_neucom_2019_11_035 crossref_primary_10_1007_s10489_023_04724_z crossref_primary_10_1109_ACCESS_2020_3043190 crossref_primary_10_1109_ACCESS_2020_2993618 crossref_primary_10_1016_j_apm_2024_06_008 crossref_primary_10_1109_TNNLS_2020_3009201 crossref_primary_10_1109_TSMC_2021_3129855 crossref_primary_10_3390_math11112556 crossref_primary_10_1016_j_neucom_2020_06_050 crossref_primary_10_1109_TNNLS_2023_3263565 crossref_primary_10_1109_TII_2020_3005937 crossref_primary_10_1007_s00521_021_06392_x crossref_primary_10_1109_TNNLS_2023_3270381 crossref_primary_10_1007_s00521_019_04639_2 crossref_primary_10_1364_AO_483140 crossref_primary_10_1109_ACCESS_2020_3002608 crossref_primary_10_1109_TNNLS_2022_3190043 crossref_primary_10_1016_j_neucom_2019_11_101 crossref_primary_10_1049_cth2_12355 crossref_primary_10_1109_TGRS_2021_3130647 crossref_primary_10_1016_j_asoc_2021_107455 crossref_primary_10_1016_j_neucom_2023_127032 crossref_primary_10_1109_ACCESS_2020_2975223 crossref_primary_10_1109_TNNLS_2021_3108050 crossref_primary_10_1109_TASE_2024_3351197 crossref_primary_10_3934_math_2022129 crossref_primary_10_1016_j_neucom_2021_12_038 crossref_primary_10_1007_s11075_020_00979_6 crossref_primary_10_3389_fnbot_2020_559048 crossref_primary_10_1016_j_neucom_2024_128136 crossref_primary_10_1109_TNNLS_2021_3110777 crossref_primary_10_1007_s40747_021_00341_w crossref_primary_10_1007_s00521_020_05145_6 crossref_primary_10_1016_j_asoc_2020_106674 |
Cites_doi | 10.1109/TCST.2017.2705057 10.1109/TNNLS.2017.2672989 10.1121/1.3665992 10.1109/TNNLS.2016.2574363 10.1109/TIE.2017.2774720 10.1109/TNNLS.2018.2828114 10.1109/TNNLS.2017.2764529 10.1088/0957-0233/17/8/007 10.1109/TNNLS.2018.2861404 10.1109/WCICA.2016.7578305 10.1109/TCYB.2015.2490170 10.1109/TIE.2016.2590379 10.1016/j.physleta.2009.03.011 10.1049/ip-h-1.1983.0004 10.1007/978-3-642-13498-2_42 10.1007/s00521-016-2640-x 10.1109/TNNLS.2018.2853732 10.1109/TNNLS.2018.2805810 10.1109/TNNLS.2018.2869375 10.1109/TNNLS.2017.2770172 10.1109/TNNLS.2015.2435014 10.1109/CDC.2005.1582739 10.1109/TII.2019.2899909 10.1109/TNNLS.2018.2885042 10.1109/TNNLS.2018.2802650 10.1109/TII.2017.2780892 10.1109/TAC.2016.2566880 10.1109/TII.2017.2717079 10.1109/ICSMC.2000.884367 10.1109/TII.2018.2789438 10.1016/j.renene.2005.07.006 10.1016/S0377-0427(00)00412-X 10.1109/MSP.2010.936020 10.1109/TSMC.2019.2916892 10.1109/TNNLS.2019.2891252 10.1080/03610910601161298 10.1109/TSMC.2017.2656941 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2019.2944992 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 3569 |
ExternalDocumentID | 31722489 10_1109_TNNLS_2019_2944992 8894424 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2017YFE0118900 – fundername: National Natural Science Foundation of China grantid: 61703189 funderid: 10.13039/501100001809 – fundername: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences grantid: 20190112 funderid: 10.13039/501100002367 – fundername: Natural Science Foundation of Gansu Province, China grantid: 18JR3RA264 funderid: 10.13039/501100004775 – fundername: Sichuan Science and Technology Program grantid: 19YYJC1656 funderid: 10.13039/100012542 – fundername: Fundamental Research Funds for the Central Universities grantid: lzujbky-2019-89 funderid: 10.13039/501100012226 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-8b293e0a153c480f098b13d4459cb0891309048bd775b4dd1e2711d4268fa1a03 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Jul 10 18:21:22 EDT 2025 Mon Jun 30 04:53:51 EDT 2025 Thu Apr 03 06:53:43 EDT 2025 Tue Jul 01 00:27:31 EDT 2025 Thu Apr 24 23:09:08 EDT 2025 Wed Aug 27 02:32:11 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-8b293e0a153c480f098b13d4459cb0891309048bd775b4dd1e2711d4268fa1a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3172-3490 0000-0002-5329-5098 0000-0002-0519-6458 0000-0003-3750-6841 |
PMID | 31722489 |
PQID | 2439703277 |
PQPubID | 85436 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TNNLS_2019_2944992 proquest_miscellaneous_2314565734 ieee_primary_8894424 proquest_journals_2439703277 crossref_citationtrail_10_1109_TNNLS_2019_2944992 pubmed_primary_31722489 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 mandic (ref8) 2007 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 dorf (ref5) 2010 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 cichocki (ref7) 2002 ref9 ref4 ref3 ref6 ref40 |
References_xml | – ident: ref15 doi: 10.1109/TCST.2017.2705057 – ident: ref23 doi: 10.1109/TNNLS.2017.2672989 – ident: ref6 doi: 10.1121/1.3665992 – ident: ref26 doi: 10.1109/TNNLS.2016.2574363 – ident: ref4 doi: 10.1109/TIE.2017.2774720 – ident: ref20 doi: 10.1109/TNNLS.2018.2828114 – ident: ref1 doi: 10.1109/TNNLS.2017.2764529 – ident: ref2 doi: 10.1088/0957-0233/17/8/007 – ident: ref25 doi: 10.1109/TNNLS.2018.2861404 – ident: ref33 doi: 10.1109/WCICA.2016.7578305 – ident: ref31 doi: 10.1109/TCYB.2015.2490170 – ident: ref30 doi: 10.1109/TIE.2016.2590379 – year: 2010 ident: ref5 publication-title: Introduction to Electric Circuits – ident: ref28 doi: 10.1016/j.physleta.2009.03.011 – ident: ref10 doi: 10.1049/ip-h-1.1983.0004 – ident: ref11 doi: 10.1007/978-3-642-13498-2_42 – ident: ref18 doi: 10.1007/s00521-016-2640-x – ident: ref24 doi: 10.1109/TNNLS.2018.2853732 – ident: ref27 doi: 10.1109/TNNLS.2018.2805810 – ident: ref39 doi: 10.1109/TNNLS.2018.2869375 – ident: ref37 doi: 10.1109/TNNLS.2017.2770172 – ident: ref29 doi: 10.1109/TNNLS.2015.2435014 – ident: ref36 doi: 10.1109/CDC.2005.1582739 – ident: ref22 doi: 10.1109/TII.2019.2899909 – ident: ref21 doi: 10.1109/TNNLS.2018.2885042 – ident: ref38 doi: 10.1109/TNNLS.2018.2802650 – ident: ref14 doi: 10.1109/TII.2017.2780892 – ident: ref32 doi: 10.1109/TAC.2016.2566880 – ident: ref16 doi: 10.1109/TII.2017.2717079 – ident: ref40 doi: 10.1109/ICSMC.2000.884367 – ident: ref17 doi: 10.1109/TII.2018.2789438 – ident: ref9 doi: 10.1016/j.renene.2005.07.006 – ident: ref12 doi: 10.1016/S0377-0427(00)00412-X – ident: ref3 doi: 10.1109/MSP.2010.936020 – ident: ref34 doi: 10.1109/TSMC.2019.2916892 – ident: ref19 doi: 10.1109/TNNLS.2019.2891252 – ident: ref35 doi: 10.1080/03610910601161298 – ident: ref13 doi: 10.1109/TSMC.2017.2656941 – year: 2007 ident: ref8 publication-title: Complex Valued Nonlinear Adaptive Filters Noncircularity Widely Linear and Neural Models – year: 2002 ident: ref7 publication-title: Adaptive Blind Signal and Image Processing Learning Algorithms and Applications |
SSID | ssj0000605649 |
Score | 2.5838425 |
Snippet | It has been reported that some specially designed recurrent neural networks and their related neural dynamics are efficient for solving quadratic programming... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3555 |
SubjectTerms | Complex domain Computational modeling Computer applications Computer simulation Constraint modelling Convergence Cybernetics discrete-time neural dynamics (DTND) Internet Mathematical model Mathematical models Model accuracy Neural networks Numerical models Perturbation methods Quadratic programming quadratic programming (QP) quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) Recurrent neural networks Robotics Robots Robustness (mathematics) Time dependence |
Title | Complex-Valued Discrete-Time Neural Dynamics for Perturbed Time-Dependent Complex Quadratic Programming With Applications |
URI | https://ieeexplore.ieee.org/document/8894424 https://www.ncbi.nlm.nih.gov/pubmed/31722489 https://www.proquest.com/docview/2439703277 https://www.proquest.com/docview/2314565734 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrjQQnlsKchI3MBbv5LYx4qlqhBdFdHC3iK_Iiq2u1WbSLS_nrHjRIAAcVtlJ5NEM_Z843kh9MoK67gXhpRecCJV6YlpJCe0bJx2VcMKE887Tubl8bl8vygWG-jNWAsTQkjJZ2Eaf6ZYvl-7Lh6VHSilpeRyE22C49bXao3nKRRweZnQLmclJ1xUi6FGhuqDs_n8w6eYyKWnHHhozX-xQ2mwyt8xZrI1R9voZHjLPsXk27Rr7dTd_dbA8X8_Ywfdz6ATH_Za8gBthNVDtD0MdMB5fe-i23hpGb6Tz2bZBY9nF7CpAKomsVAExz4ewGXWz7C_wQB38Wm4BptlgTaSkFkeqdvizAl_7IyPSubwaZ8Jdgm2En-5aL_iw59i54_Q-dG7s7fHJM9mIE4UrCXKAk4I1MCG6aSiDdXKMuGlLLSzNMY-qYbNwfqqKqz0ngVeMeYBD6jGMEPFY7S1Wq_CU4QBQSnVxDYxAIYss0YZRpvgG_CsvPd6gtggqdrlxuVxfsayTg4M1XWSbh2lW2fpTtDr8Z6rvm3HP6l3o5RGyiygCdofFKLOK_um5hHBUcGraoJejn_DmoyBFrMK6w5oBEvhZAEsnvSKNPIGvAaoSem9Pz_zGbrHo0efstj20VZ73YXnAHta-yLp-w8kmv4E |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOcCFAoWyUMBI3MBbv5LYx4qlWmB3VcQW9hb5FVGx7KI2kYBfz9h5CBAgblEymTiaseez54XQUyus414YknvBiVS5J6aSnNC8ctoVFctMPO-YL_LpmXy9ylY76PmQCxNCSMFnYRwvky_fb10Tj8qOlNJScnkFXc1iMm6brTWcqFBA5nnCu5zlnHBRrPosGaqPlovF7F0M5dJjDly05r9YotRa5e8oM1mbkz0078fZBpl8Gje1Hbvvv5Vw_N8fuYludLATH7d6cgvthM1ttNe3dMDdDN9H3-KtdfhK3pt1EzyenMOyAriaxFQRHCt5AJdJ28X-EgPgxafhAqyWBdpIQiZdU90ad5zw28b4qGYOn7axYJ_BWuIP5_VHfPyT9_wOOjt5uXwxJV13BuJExmqiLCCFQA0smU4qWlGtLBNeykw7S6P3k2pYHqwvisxK71ngBWMeEIGqDDNU3EW7m-0m3EMYMJRSVSwUA3DIMmuUYbQKvoK9lfdejxDrJVW6rnR57KCxLtMWhuoySbeM0i076Y7Qs-GdL23hjn9S70cpDZSdgEbosFeIspvblyWPGI4KXhQj9GR4DLMyulrMJmwboBEsOZQFsDhoFWngDYgNcJPS9__8zcfo2nQ5n5WzV4s3D9B1Hvf3KabtEO3WF014CCCoto-S7v8Ag7gBWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex-Valued+Discrete-Time+Neural+Dynamics+for+Perturbed+Time-Dependent+Complex+Quadratic+Programming+With+Applications&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Qi%2C+Yimeng&rft.au=Jin%2C+Long&rft.au=Wang%2C+Yaonan&rft.au=Xiao%2C+Lin&rft.date=2020-09-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=31&rft.issue=9&rft.spage=3555&rft.epage=3569&rft_id=info:doi/10.1109%2FTNNLS.2019.2944992&rft.externalDocID=8894424 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |