Complex-Valued Discrete-Time Neural Dynamics for Perturbed Time-Dependent Complex Quadratic Programming With Applications

It has been reported that some specially designed recurrent neural networks and their related neural dynamics are efficient for solving quadratic programming (QP) problems in the real domain. A complex-valued QP problem is generated if its variable vector is composed of the magnitude and phase infor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 9; pp. 3555 - 3569
Main Authors Qi, Yimeng, Jin, Long, Wang, Yaonan, Xiao, Lin, Zhang, Jiliang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2019.2944992

Cover

Loading…
Abstract It has been reported that some specially designed recurrent neural networks and their related neural dynamics are efficient for solving quadratic programming (QP) problems in the real domain. A complex-valued QP problem is generated if its variable vector is composed of the magnitude and phase information, which is often depicted in a time-dependent form. Given the important role that complex-valued problems play in cybernetics and engineering, computational models with high accuracy and strong robustness are urgently needed, especially for time-dependent problems. However, the research on the online solution of time-dependent complex-valued problems has been much less investigated compared to time-dependent real-valued problems. In this article, to solve the online time-dependent complex-valued QP problems subject to linear constraints, two new discrete-time neural dynamics models, which can achieve global convergence performance in the presence of perturbations with the provided theoretical analyses, are proposed and investigated. In addition, the second proposed model is developed to eliminate the operation of explicit matrix inversion by introducing the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Moreover, computer simulation results and applications in robotics and filters are provided to illustrate the feasibility and superiority of the proposed models in comparison with the existing solutions.
AbstractList It has been reported that some specially designed recurrent neural networks and their related neural dynamics are efficient for solving quadratic programming (QP) problems in the real domain. A complex-valued QP problem is generated if its variable vector is composed of the magnitude and phase information, which is often depicted in a time-dependent form. Given the important role that complex-valued problems play in cybernetics and engineering, computational models with high accuracy and strong robustness are urgently needed, especially for time-dependent problems. However, the research on the online solution of time-dependent complex-valued problems has been much less investigated compared to time-dependent real-valued problems. In this article, to solve the online time-dependent complex-valued QP problems subject to linear constraints, two new discrete-time neural dynamics models, which can achieve global convergence performance in the presence of perturbations with the provided theoretical analyses, are proposed and investigated. In addition, the second proposed model is developed to eliminate the operation of explicit matrix inversion by introducing the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. Moreover, computer simulation results and applications in robotics and filters are provided to illustrate the feasibility and superiority of the proposed models in comparison with the existing solutions.
It has been reported that some specially designed recurrent neural networks and their related neural dynamics are efficient for solving quadratic programming (QP) problems in the real domain. A complex-valued QP problem is generated if its variable vector is composed of the magnitude and phase information, which is often depicted in a time-dependent form. Given the important role that complex-valued problems play in cybernetics and engineering, computational models with high accuracy and strong robustness are urgently needed, especially for time-dependent problems. However, the research on the online solution of time-dependent complex-valued problems has been much less investigated compared to time-dependent real-valued problems. In this article, to solve the online time-dependent complex-valued QP problems subject to linear constraints, two new discrete-time neural dynamics models, which can achieve global convergence performance in the presence of perturbations with the provided theoretical analyses, are proposed and investigated. In addition, the second proposed model is developed to eliminate the operation of explicit matrix inversion by introducing the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Moreover, computer simulation results and applications in robotics and filters are provided to illustrate the feasibility and superiority of the proposed models in comparison with the existing solutions.It has been reported that some specially designed recurrent neural networks and their related neural dynamics are efficient for solving quadratic programming (QP) problems in the real domain. A complex-valued QP problem is generated if its variable vector is composed of the magnitude and phase information, which is often depicted in a time-dependent form. Given the important role that complex-valued problems play in cybernetics and engineering, computational models with high accuracy and strong robustness are urgently needed, especially for time-dependent problems. However, the research on the online solution of time-dependent complex-valued problems has been much less investigated compared to time-dependent real-valued problems. In this article, to solve the online time-dependent complex-valued QP problems subject to linear constraints, two new discrete-time neural dynamics models, which can achieve global convergence performance in the presence of perturbations with the provided theoretical analyses, are proposed and investigated. In addition, the second proposed model is developed to eliminate the operation of explicit matrix inversion by introducing the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Moreover, computer simulation results and applications in robotics and filters are provided to illustrate the feasibility and superiority of the proposed models in comparison with the existing solutions.
Author Wang, Yaonan
Jin, Long
Zhang, Jiliang
Xiao, Lin
Qi, Yimeng
Author_xml – sequence: 1
  givenname: Yimeng
  surname: Qi
  fullname: Qi, Yimeng
  email: ymqi0421@foxmail.com
  organization: School of Information Science and Engineering, Lanzhou University, Lanzhou, China
– sequence: 2
  givenname: Long
  orcidid: 0000-0002-5329-5098
  surname: Jin
  fullname: Jin, Long
  email: longjin@ieee.org
  organization: School of Information Science and Engineering, Lanzhou University, Lanzhou, China
– sequence: 3
  givenname: Yaonan
  orcidid: 0000-0002-0519-6458
  surname: Wang
  fullname: Wang, Yaonan
  organization: College of Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 4
  givenname: Lin
  orcidid: 0000-0003-3172-3490
  surname: Xiao
  fullname: Xiao, Lin
  organization: College of Computer Science and Electrical Engineering, Hunan Normal University, Changsha, China
– sequence: 5
  givenname: Jiliang
  orcidid: 0000-0003-3750-6841
  surname: Zhang
  fullname: Zhang, Jiliang
  organization: Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31722489$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1UREvpHwAJWeLCJYu_ktjHapcvabUUsXzcLCeZFFeJndqOxP57vN1lDz0wF480zzsznvc5OnPeAUIvKVlQStS77Waz_rZghKoFU0IoxZ6gC0YrVjAu5dkpr3-do6sY70iOipSVUM_QOac1Y0KqC7Rb-nEa4E_xwwwzdHhlYxsgQbG1I-ANzMEMeLVzZrRtxL0P-AZCmkOT2T1SrGAC14FL-NgJf51NF0yyLb4J_jaYcbTuFv-06Te-nqbBtrnmXXyBnvZmiHB1fC_R9w_vt8tPxfrLx8_L63XR8pKmQjZMcSCGlrwVkvREyYbyTohStQ2RinKiiJBNV9dlI7qOAqsp7QSrZG-oIfwSvT30nYK_nyEmPeY_wjAYB36OmnEqyqqsucjom0fonZ-Dy9tpJriqCWd1nanXR2puRuj0FOxowk7_O2oG2AFog48xQH9CKNF78_SDeXpvnj6al0Xykai16eFSKRg7_F_66iC1AHCaJWUu57X_As0Apo4
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TCYB_2021_3051261
crossref_primary_10_1016_j_asoc_2022_109209
crossref_primary_10_1109_TNNLS_2020_2963998
crossref_primary_10_1016_j_asoc_2025_113030
crossref_primary_10_1016_j_neucom_2022_01_018
crossref_primary_10_1109_TII_2022_3210255
crossref_primary_10_1016_j_engappai_2021_104306
crossref_primary_10_1109_TII_2020_3047959
crossref_primary_10_1007_s10489_023_04732_z
crossref_primary_10_1109_ACCESS_2020_3045185
crossref_primary_10_1109_TIE_2021_3062257
crossref_primary_10_1109_TNNLS_2021_3095122
crossref_primary_10_1109_TSMC_2021_3115555
crossref_primary_10_1016_j_measurement_2020_108137
crossref_primary_10_1109_TNNLS_2020_3041364
crossref_primary_10_1016_j_asoc_2021_107514
crossref_primary_10_1016_j_ins_2023_118963
crossref_primary_10_1109_ACCESS_2020_2991726
crossref_primary_10_1016_j_apm_2021_03_021
crossref_primary_10_1016_j_neunet_2022_03_010
crossref_primary_10_1007_s10462_022_10164_x
crossref_primary_10_1016_j_chaos_2022_112674
crossref_primary_10_1016_j_neucom_2022_11_071
crossref_primary_10_1109_TIE_2020_3007099
crossref_primary_10_1016_j_neunet_2021_02_002
crossref_primary_10_3390_rs15235555
crossref_primary_10_1007_s11071_021_06233_5
crossref_primary_10_1016_j_ins_2022_12_090
crossref_primary_10_1109_TIE_2023_3273253
crossref_primary_10_1109_TNNLS_2022_3230898
crossref_primary_10_1016_j_neucom_2019_10_080
crossref_primary_10_1016_j_neucom_2019_11_035
crossref_primary_10_1007_s10489_023_04724_z
crossref_primary_10_1109_ACCESS_2020_3043190
crossref_primary_10_1109_ACCESS_2020_2993618
crossref_primary_10_1016_j_apm_2024_06_008
crossref_primary_10_1109_TNNLS_2020_3009201
crossref_primary_10_1109_TSMC_2021_3129855
crossref_primary_10_3390_math11112556
crossref_primary_10_1016_j_neucom_2020_06_050
crossref_primary_10_1109_TNNLS_2023_3263565
crossref_primary_10_1109_TII_2020_3005937
crossref_primary_10_1007_s00521_021_06392_x
crossref_primary_10_1109_TNNLS_2023_3270381
crossref_primary_10_1007_s00521_019_04639_2
crossref_primary_10_1364_AO_483140
crossref_primary_10_1109_ACCESS_2020_3002608
crossref_primary_10_1109_TNNLS_2022_3190043
crossref_primary_10_1016_j_neucom_2019_11_101
crossref_primary_10_1049_cth2_12355
crossref_primary_10_1109_TGRS_2021_3130647
crossref_primary_10_1016_j_asoc_2021_107455
crossref_primary_10_1016_j_neucom_2023_127032
crossref_primary_10_1109_ACCESS_2020_2975223
crossref_primary_10_1109_TNNLS_2021_3108050
crossref_primary_10_1109_TASE_2024_3351197
crossref_primary_10_3934_math_2022129
crossref_primary_10_1016_j_neucom_2021_12_038
crossref_primary_10_1007_s11075_020_00979_6
crossref_primary_10_3389_fnbot_2020_559048
crossref_primary_10_1016_j_neucom_2024_128136
crossref_primary_10_1109_TNNLS_2021_3110777
crossref_primary_10_1007_s40747_021_00341_w
crossref_primary_10_1007_s00521_020_05145_6
crossref_primary_10_1016_j_asoc_2020_106674
Cites_doi 10.1109/TCST.2017.2705057
10.1109/TNNLS.2017.2672989
10.1121/1.3665992
10.1109/TNNLS.2016.2574363
10.1109/TIE.2017.2774720
10.1109/TNNLS.2018.2828114
10.1109/TNNLS.2017.2764529
10.1088/0957-0233/17/8/007
10.1109/TNNLS.2018.2861404
10.1109/WCICA.2016.7578305
10.1109/TCYB.2015.2490170
10.1109/TIE.2016.2590379
10.1016/j.physleta.2009.03.011
10.1049/ip-h-1.1983.0004
10.1007/978-3-642-13498-2_42
10.1007/s00521-016-2640-x
10.1109/TNNLS.2018.2853732
10.1109/TNNLS.2018.2805810
10.1109/TNNLS.2018.2869375
10.1109/TNNLS.2017.2770172
10.1109/TNNLS.2015.2435014
10.1109/CDC.2005.1582739
10.1109/TII.2019.2899909
10.1109/TNNLS.2018.2885042
10.1109/TNNLS.2018.2802650
10.1109/TII.2017.2780892
10.1109/TAC.2016.2566880
10.1109/TII.2017.2717079
10.1109/ICSMC.2000.884367
10.1109/TII.2018.2789438
10.1016/j.renene.2005.07.006
10.1016/S0377-0427(00)00412-X
10.1109/MSP.2010.936020
10.1109/TSMC.2019.2916892
10.1109/TNNLS.2019.2891252
10.1080/03610910601161298
10.1109/TSMC.2017.2656941
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2019.2944992
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 3569
ExternalDocumentID 31722489
10_1109_TNNLS_2019_2944992
8894424
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2017YFE0118900
– fundername: National Natural Science Foundation of China
  grantid: 61703189
  funderid: 10.13039/501100001809
– fundername: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences
  grantid: 20190112
  funderid: 10.13039/501100002367
– fundername: Natural Science Foundation of Gansu Province, China
  grantid: 18JR3RA264
  funderid: 10.13039/501100004775
– fundername: Sichuan Science and Technology Program
  grantid: 19YYJC1656
  funderid: 10.13039/100012542
– fundername: Fundamental Research Funds for the Central Universities
  grantid: lzujbky-2019-89
  funderid: 10.13039/501100012226
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-8b293e0a153c480f098b13d4459cb0891309048bd775b4dd1e2711d4268fa1a03
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 18:21:22 EDT 2025
Mon Jun 30 04:53:51 EDT 2025
Thu Apr 03 06:53:43 EDT 2025
Tue Jul 01 00:27:31 EDT 2025
Thu Apr 24 23:09:08 EDT 2025
Wed Aug 27 02:32:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-8b293e0a153c480f098b13d4459cb0891309048bd775b4dd1e2711d4268fa1a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3172-3490
0000-0002-5329-5098
0000-0002-0519-6458
0000-0003-3750-6841
PMID 31722489
PQID 2439703277
PQPubID 85436
PageCount 15
ParticipantIDs crossref_primary_10_1109_TNNLS_2019_2944992
proquest_miscellaneous_2314565734
ieee_primary_8894424
proquest_journals_2439703277
crossref_citationtrail_10_1109_TNNLS_2019_2944992
pubmed_primary_31722489
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
mandic (ref8) 2007
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
dorf (ref5) 2010
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
cichocki (ref7) 2002
ref9
ref4
ref3
ref6
ref40
References_xml – ident: ref15
  doi: 10.1109/TCST.2017.2705057
– ident: ref23
  doi: 10.1109/TNNLS.2017.2672989
– ident: ref6
  doi: 10.1121/1.3665992
– ident: ref26
  doi: 10.1109/TNNLS.2016.2574363
– ident: ref4
  doi: 10.1109/TIE.2017.2774720
– ident: ref20
  doi: 10.1109/TNNLS.2018.2828114
– ident: ref1
  doi: 10.1109/TNNLS.2017.2764529
– ident: ref2
  doi: 10.1088/0957-0233/17/8/007
– ident: ref25
  doi: 10.1109/TNNLS.2018.2861404
– ident: ref33
  doi: 10.1109/WCICA.2016.7578305
– ident: ref31
  doi: 10.1109/TCYB.2015.2490170
– ident: ref30
  doi: 10.1109/TIE.2016.2590379
– year: 2010
  ident: ref5
  publication-title: Introduction to Electric Circuits
– ident: ref28
  doi: 10.1016/j.physleta.2009.03.011
– ident: ref10
  doi: 10.1049/ip-h-1.1983.0004
– ident: ref11
  doi: 10.1007/978-3-642-13498-2_42
– ident: ref18
  doi: 10.1007/s00521-016-2640-x
– ident: ref24
  doi: 10.1109/TNNLS.2018.2853732
– ident: ref27
  doi: 10.1109/TNNLS.2018.2805810
– ident: ref39
  doi: 10.1109/TNNLS.2018.2869375
– ident: ref37
  doi: 10.1109/TNNLS.2017.2770172
– ident: ref29
  doi: 10.1109/TNNLS.2015.2435014
– ident: ref36
  doi: 10.1109/CDC.2005.1582739
– ident: ref22
  doi: 10.1109/TII.2019.2899909
– ident: ref21
  doi: 10.1109/TNNLS.2018.2885042
– ident: ref38
  doi: 10.1109/TNNLS.2018.2802650
– ident: ref14
  doi: 10.1109/TII.2017.2780892
– ident: ref32
  doi: 10.1109/TAC.2016.2566880
– ident: ref16
  doi: 10.1109/TII.2017.2717079
– ident: ref40
  doi: 10.1109/ICSMC.2000.884367
– ident: ref17
  doi: 10.1109/TII.2018.2789438
– ident: ref9
  doi: 10.1016/j.renene.2005.07.006
– ident: ref12
  doi: 10.1016/S0377-0427(00)00412-X
– ident: ref3
  doi: 10.1109/MSP.2010.936020
– ident: ref34
  doi: 10.1109/TSMC.2019.2916892
– ident: ref19
  doi: 10.1109/TNNLS.2019.2891252
– ident: ref35
  doi: 10.1080/03610910601161298
– ident: ref13
  doi: 10.1109/TSMC.2017.2656941
– year: 2007
  ident: ref8
  publication-title: Complex Valued Nonlinear Adaptive Filters Noncircularity Widely Linear and Neural Models
– year: 2002
  ident: ref7
  publication-title: Adaptive Blind Signal and Image Processing Learning Algorithms and Applications
SSID ssj0000605649
Score 2.5838425
Snippet It has been reported that some specially designed recurrent neural networks and their related neural dynamics are efficient for solving quadratic programming...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3555
SubjectTerms Complex domain
Computational modeling
Computer applications
Computer simulation
Constraint modelling
Convergence
Cybernetics
discrete-time neural dynamics (DTND)
Internet
Mathematical model
Mathematical models
Model accuracy
Neural networks
Numerical models
Perturbation methods
Quadratic programming
quadratic programming (QP)
quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS)
Recurrent neural networks
Robotics
Robots
Robustness (mathematics)
Time dependence
Title Complex-Valued Discrete-Time Neural Dynamics for Perturbed Time-Dependent Complex Quadratic Programming With Applications
URI https://ieeexplore.ieee.org/document/8894424
https://www.ncbi.nlm.nih.gov/pubmed/31722489
https://www.proquest.com/docview/2439703277
https://www.proquest.com/docview/2314565734
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrjQQnlsKchI3MBbv5LYx4qlqhBdFdHC3iK_Iiq2u1WbSLS_nrHjRIAAcVtlJ5NEM_Z843kh9MoK67gXhpRecCJV6YlpJCe0bJx2VcMKE887Tubl8bl8vygWG-jNWAsTQkjJZ2Eaf6ZYvl-7Lh6VHSilpeRyE22C49bXao3nKRRweZnQLmclJ1xUi6FGhuqDs_n8w6eYyKWnHHhozX-xQ2mwyt8xZrI1R9voZHjLPsXk27Rr7dTd_dbA8X8_Ywfdz6ATH_Za8gBthNVDtD0MdMB5fe-i23hpGb6Tz2bZBY9nF7CpAKomsVAExz4ewGXWz7C_wQB38Wm4BptlgTaSkFkeqdvizAl_7IyPSubwaZ8Jdgm2En-5aL_iw59i54_Q-dG7s7fHJM9mIE4UrCXKAk4I1MCG6aSiDdXKMuGlLLSzNMY-qYbNwfqqKqz0ngVeMeYBD6jGMEPFY7S1Wq_CU4QBQSnVxDYxAIYss0YZRpvgG_CsvPd6gtggqdrlxuVxfsayTg4M1XWSbh2lW2fpTtDr8Z6rvm3HP6l3o5RGyiygCdofFKLOK_um5hHBUcGraoJejn_DmoyBFrMK6w5oBEvhZAEsnvSKNPIGvAaoSem9Pz_zGbrHo0efstj20VZ73YXnAHta-yLp-w8kmv4E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOcCFAoWyUMBI3MBbv5LYx4qlWmB3VcQW9hb5FVGx7KI2kYBfz9h5CBAgblEymTiaseez54XQUyus414YknvBiVS5J6aSnNC8ctoVFctMPO-YL_LpmXy9ylY76PmQCxNCSMFnYRwvky_fb10Tj8qOlNJScnkFXc1iMm6brTWcqFBA5nnCu5zlnHBRrPosGaqPlovF7F0M5dJjDly05r9YotRa5e8oM1mbkz0078fZBpl8Gje1Hbvvv5Vw_N8fuYludLATH7d6cgvthM1ttNe3dMDdDN9H3-KtdfhK3pt1EzyenMOyAriaxFQRHCt5AJdJ28X-EgPgxafhAqyWBdpIQiZdU90ad5zw28b4qGYOn7axYJ_BWuIP5_VHfPyT9_wOOjt5uXwxJV13BuJExmqiLCCFQA0smU4qWlGtLBNeykw7S6P3k2pYHqwvisxK71ngBWMeEIGqDDNU3EW7m-0m3EMYMJRSVSwUA3DIMmuUYbQKvoK9lfdejxDrJVW6rnR57KCxLtMWhuoySbeM0i076Y7Qs-GdL23hjn9S70cpDZSdgEbosFeIspvblyWPGI4KXhQj9GR4DLMyulrMJmwboBEsOZQFsDhoFWngDYgNcJPS9__8zcfo2nQ5n5WzV4s3D9B1Hvf3KabtEO3WF014CCCoto-S7v8Ag7gBWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex-Valued+Discrete-Time+Neural+Dynamics+for+Perturbed+Time-Dependent+Complex+Quadratic+Programming+With+Applications&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Qi%2C+Yimeng&rft.au=Jin%2C+Long&rft.au=Wang%2C+Yaonan&rft.au=Xiao%2C+Lin&rft.date=2020-09-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=31&rft.issue=9&rft.spage=3555&rft.epage=3569&rft_id=info:doi/10.1109%2FTNNLS.2019.2944992&rft.externalDocID=8894424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon