Complex-Valued Discrete-Time Neural Dynamics for Perturbed Time-Dependent Complex Quadratic Programming With Applications

It has been reported that some specially designed recurrent neural networks and their related neural dynamics are efficient for solving quadratic programming (QP) problems in the real domain. A complex-valued QP problem is generated if its variable vector is composed of the magnitude and phase infor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 9; pp. 3555 - 3569
Main Authors Qi, Yimeng, Jin, Long, Wang, Yaonan, Xiao, Lin, Zhang, Jiliang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2019.2944992

Cover

Loading…
More Information
Summary:It has been reported that some specially designed recurrent neural networks and their related neural dynamics are efficient for solving quadratic programming (QP) problems in the real domain. A complex-valued QP problem is generated if its variable vector is composed of the magnitude and phase information, which is often depicted in a time-dependent form. Given the important role that complex-valued problems play in cybernetics and engineering, computational models with high accuracy and strong robustness are urgently needed, especially for time-dependent problems. However, the research on the online solution of time-dependent complex-valued problems has been much less investigated compared to time-dependent real-valued problems. In this article, to solve the online time-dependent complex-valued QP problems subject to linear constraints, two new discrete-time neural dynamics models, which can achieve global convergence performance in the presence of perturbations with the provided theoretical analyses, are proposed and investigated. In addition, the second proposed model is developed to eliminate the operation of explicit matrix inversion by introducing the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Moreover, computer simulation results and applications in robotics and filters are provided to illustrate the feasibility and superiority of the proposed models in comparison with the existing solutions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2019.2944992