Energy-to-Peak State Estimation for Switched Neutral-Type Neural Networks With Sector Condition via Sampled-Data Information

In this article, the energy-to-peak state estimation problem is investigated for a class of switched neutral neural networks subject to the external perturbations with bounded energy. Both the values of the measurement outputs and switching signal of the subsystems are only available for the control...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 3; pp. 1339 - 1350
Main Authors Sang, Hong, Zhao, Jun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, the energy-to-peak state estimation problem is investigated for a class of switched neutral neural networks subject to the external perturbations with bounded energy. Both the values of the measurement outputs and switching signal of the subsystems are only available for the controllers at the discrete sampling instants. Unlike the results for nonswitched neural networks, the coexistence of the switching and sampling actions directly causes the asynchronous phenomena between the indexes of subsystems and their corresponding controllers. To address this situation, the piecewise time-dependent Lyapunov-Krasovskii functional and slow switching mechanism are introduced. Under the developed theorem conditions, we prove that the designed state estimator exponentially tracks the true value of the neural state with the accessible sampled-data information. Also, the influence of the exogenous perturbations on the peak value of the estimation error is constrained at a prescribed level. Finally, a neutral cellular neural network with switching parameters is employed to substantiate the effectiveness and applicability of the theoretical results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2020.2984629