Distributed Dissipative State Estimation for Markov Jump Genetic Regulatory Networks Subject to Round-Robin Scheduling

The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 3; pp. 762 - 771
Main Authors Shen, Hao, Huo, Shicheng, Yan, Huaicheng, Park, Ju H., Sreeram, Victor
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly (Λ 1 , Λ 2 , Λ 3 )y-stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method.
AbstractList The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly (Λ 1 , Λ 2 , Λ 3 )y-stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method.
The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly [Formula Omitted]-[Formula Omitted]-stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method.
The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly (Λ 1,Λ 2,Λ 3) - γ -stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method.The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly (Λ 1,Λ 2,Λ 3) - γ -stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method.
The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly (Λ ,Λ ,Λ ) - γ -stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method.
Author Huo, Shicheng
Yan, Huaicheng
Sreeram, Victor
Shen, Hao
Park, Ju H.
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0001-7024-6573
  surname: Shen
  fullname: Shen, Hao
  email: haoshen10@gmail.com
  organization: School of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan, China
– sequence: 2
  givenname: Shicheng
  orcidid: 0000-0002-4437-275X
  surname: Huo
  fullname: Huo, Shicheng
  email: shichenghuo123@gmail.com
  organization: School of Automation, Southeast University, Nanjing, China
– sequence: 3
  givenname: Huaicheng
  orcidid: 0000-0001-5496-1809
  surname: Yan
  fullname: Yan, Huaicheng
  email: hcyan@ecust.edu.cn
  organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
– sequence: 4
  givenname: Ju H.
  orcidid: 0000-0002-0218-2333
  surname: Park
  fullname: Park, Ju H.
  email: jessie@ynu.ac.kr
  organization: Department of Electrical Engineering, Yeungnam University, Kyongsan, South Korea
– sequence: 5
  givenname: Victor
  orcidid: 0000-0001-6762-1504
  surname: Sreeram
  fullname: Sreeram, Victor
  email: victor.sreeram@uwa.edu.au
  organization: School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Perth, WA, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31056522$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1UREvpHwAJWWLDZoJfM_YsUSkFFIKUFImd5fHcKU4n4-BHUP89bpN20QWWJV_Z37m6PuclOpr8BAi9pmRGKWk_XC0W89WMEdrOWEtaKeQzdMJowyrGlTp6rOWvY3QW45qU1ZC6Ee0LdMxpqWrGTtDuk4spuC4n6HGpo9ua5HaAV8kkwBcxuU258BMefMDfTbjxO_wtb7b4EiZIzuIlXOfRJB9u8QLSXx9uIl7lbg024eTx0uepr5a-cxNe2d_Q59FN16_Q88GMEc4O5yn6-fni6vxLNf9x-fX847yyvKapUoJ3fc0ZmNqwWgghBzNYUEZQYxsJg2WWDEqKoQfbGimJJaS8MVu2JJyfovf7vtvg_2SISW9ctDCOZgKfo2aMM8oaIeqCvnuCrn0OU5lOFxcZJ6ppVaHeHqjcbaDX21D8Cbf6wdECqD1gg48xwKCtS_cOpmDcqCnRd_np-_z0XX76kF-RsifSh-7_Fb3ZixwAPApU-bzgnP8DEf6nPA
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_amc_2022_127252
crossref_primary_10_1016_j_nahs_2021_101135
crossref_primary_10_1007_s11063_019_10175_w
crossref_primary_10_1016_j_neucom_2021_03_022
crossref_primary_10_1002_asjc_2762
crossref_primary_10_1109_TCBB_2022_3173969
crossref_primary_10_1109_TFUZZ_2019_2935685
crossref_primary_10_1007_s12043_025_02891_x
crossref_primary_10_1109_TNNLS_2019_2920368
crossref_primary_10_1016_j_jfranklin_2021_08_045
crossref_primary_10_1007_s11071_021_06263_z
crossref_primary_10_1002_oca_2637
crossref_primary_10_1016_j_amc_2020_125662
crossref_primary_10_1016_j_amc_2020_125421
crossref_primary_10_1016_j_amc_2019_124838
crossref_primary_10_1080_00207721_2022_2056653
crossref_primary_10_1109_ACCESS_2019_2947513
crossref_primary_10_1109_TAC_2022_3170333
crossref_primary_10_1109_TSMC_2023_3262838
crossref_primary_10_1007_s00285_023_01924_6
crossref_primary_10_1109_TCBB_2021_3114405
crossref_primary_10_1016_j_cnsns_2023_107669
crossref_primary_10_1007_s00034_020_01343_8
crossref_primary_10_1016_j_amc_2020_125360
crossref_primary_10_1080_0952813X_2022_2115146
crossref_primary_10_1016_j_amc_2020_125630
crossref_primary_10_1007_s11071_021_06725_4
crossref_primary_10_1177_01423312221143269
crossref_primary_10_1007_s00521_022_07010_0
crossref_primary_10_1016_j_neucom_2021_07_093
crossref_primary_10_1016_j_ins_2024_120337
crossref_primary_10_1016_j_jfranklin_2021_10_043
crossref_primary_10_1109_TNNLS_2022_3230978
crossref_primary_10_1155_2023_1335184
crossref_primary_10_1007_s40314_021_01604_5
crossref_primary_10_1109_TCSI_2021_3077485
crossref_primary_10_1109_JIOT_2021_3068878
crossref_primary_10_1002_acs_3464
crossref_primary_10_1016_j_amc_2023_128043
crossref_primary_10_1007_s11071_020_05885_z
crossref_primary_10_1016_j_jfranklin_2021_04_013
crossref_primary_10_1109_TFUZZ_2020_3046335
crossref_primary_10_1007_s12555_021_0872_8
crossref_primary_10_1016_j_amc_2020_125402
crossref_primary_10_1007_s11424_020_0106_9
crossref_primary_10_1016_j_amc_2020_125887
crossref_primary_10_1007_s12346_022_00575_0
crossref_primary_10_1016_j_jfranklin_2020_08_023
crossref_primary_10_1007_s12555_019_0818_6
crossref_primary_10_1016_j_amc_2020_125563
crossref_primary_10_1016_j_amc_2020_125401
crossref_primary_10_3934_math_2024185
crossref_primary_10_1007_s40815_021_01228_1
crossref_primary_10_1109_TCBB_2020_3040979
crossref_primary_10_1109_TNB_2021_3111109
crossref_primary_10_1109_TSMC_2023_3286846
crossref_primary_10_1016_j_neucom_2021_05_045
crossref_primary_10_1109_TSMC_2019_2956281
crossref_primary_10_1016_j_amc_2020_125384
crossref_primary_10_1049_iet_cta_2019_1476
crossref_primary_10_1016_j_jfranklin_2021_08_035
crossref_primary_10_1007_s11063_022_11010_5
crossref_primary_10_1016_j_jfranklin_2022_03_031
crossref_primary_10_3934_mbe_2022647
Cites_doi 10.1016/j.neucom.2015.06.057
10.1109/TAC.2018.2797173
10.1109/TIE.2012.2213553
10.1109/TAC.2008.2007862
10.1002/cplx.21649
10.1109/TNNLS.2018.2817244
10.1016/j.inffus.2011.09.004
10.1016/j.mbs.2014.02.008
10.1016/j.fss.2018.01.017
10.1109/TNNLS.2017.2721448
10.1109/TNNLS.2016.2636875
10.1109/TSMC.2015.2435700
10.1049/iet-cta.2013.0040
10.1109/TNNLS.2014.2317880
10.1109/TNNLS.2016.2524621
10.1109/TNNLS.2015.2507790
10.1016/j.ins.2014.08.047
10.1109/TCYB.2016.2536748
10.1109/TNN.2007.911748
10.1109/TNNLS.2016.2599263
10.1016/j.neucom.2012.01.027
10.1109/TCYB.2015.2411285
10.1109/TCYB.2016.2635122
10.1002/rnc.1703
10.1073/pnas.91.11.5022
10.1109/TNNLS.2018.2874035
10.1109/TNB.2013.2294478
10.1109/TNNLS.2014.2387434
10.1109/TNNLS.2015.2402691
10.1109/TPWRD.2015.2460460
10.1109/TAC.2017.2774006
10.1016/j.jfranklin.2016.01.015
10.1109/TNN.2011.2105501
10.1109/TSMC.2016.2629464
10.1109/TSP.2015.2424205
10.1109/TNNLS.2015.2411734
10.1109/TCNS.2017.2763756
10.1016/j.automatica.2018.03.029
10.1109/TCBB.2016.2552519
10.1109/TNNLS.2016.2618899
10.1109/TNNLS.2015.2511196
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2019.2909747
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 771
ExternalDocumentID 31056522
10_1109_TNNLS_2019_2909747
8703433
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2018M632206
  funderid: 10.13039/501100002858
– fundername: National Research Foundation of Korea
  funderid: 10.13039/501100003725
– fundername: Ministry of Education
  grantid: NRF-2017R1A2B2004671
  funderid: 10.13039/501100002701
– fundername: National Natural Science Foundation of China
  grantid: 61873002; 61703004; 61503002; 61673178
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Anhui Province
  grantid: 1708085MF165; 1808085QA18
  funderid: 10.13039/501100003995
– fundername: University Excellent Young Talents Foundation of Anhui Province
  grantid: gxyqZD2017041
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-843bd532ea5a254447fafce8a41ac67efc2c0f874fdec9a770c0041a2ca2c7033
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 02:19:28 EDT 2025
Sun Jun 29 12:41:47 EDT 2025
Thu Jan 02 23:00:23 EST 2025
Tue Jul 01 00:27:30 EDT 2025
Thu Apr 24 22:50:51 EDT 2025
Wed Aug 27 02:35:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-843bd532ea5a254447fafce8a41ac67efc2c0f874fdec9a770c0041a2ca2c7033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7024-6573
0000-0001-6762-1504
0000-0002-4437-275X
0000-0001-5496-1809
0000-0002-0218-2333
PMID 31056522
PQID 2372308698
PQPubID 85436
PageCount 10
ParticipantIDs pubmed_primary_31056522
crossref_primary_10_1109_TNNLS_2019_2909747
ieee_primary_8703433
proquest_miscellaneous_2232126445
proquest_journals_2372308698
crossref_citationtrail_10_1109_TNNLS_2019_2909747
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
cao (ref1) 2008; 19
ref2
ref39
ref17
ref38
ref16
ref19
ref18
yu (ref8) 2018; 29
xue (ref9) 2018; 29
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref7
ref4
ref3
ref6
ref5
ref40
wan (ref10) 0
References_xml – ident: ref36
  doi: 10.1016/j.neucom.2015.06.057
– ident: ref18
  doi: 10.1109/TAC.2018.2797173
– ident: ref24
  doi: 10.1109/TIE.2012.2213553
– ident: ref4
  doi: 10.1109/TAC.2008.2007862
– ident: ref13
  doi: 10.1002/cplx.21649
– volume: 29
  start-page: 3047
  year: 2018
  ident: ref8
  article-title: Stability analysis of genetic regulatory networks with switching parameters and time delays
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref21
  doi: 10.1109/TNNLS.2018.2817244
– ident: ref23
  doi: 10.1016/j.inffus.2011.09.004
– ident: ref35
  doi: 10.1016/j.mbs.2014.02.008
– ident: ref39
  doi: 10.1016/j.fss.2018.01.017
– volume: 29
  start-page: 3404
  year: 2018
  ident: ref9
  article-title: Model approximation for switched genetic regulatory networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2721448
– ident: ref30
  doi: 10.1109/TNNLS.2016.2636875
– ident: ref17
  doi: 10.1109/TSMC.2015.2435700
– year: 0
  ident: ref10
  article-title: A recursive approach to quantized $\mathcal{H}_\infty$ state estimation for genetic regulatory networks under stochastic communication protocols
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref28
  doi: 10.1049/iet-cta.2013.0040
– ident: ref6
  doi: 10.1109/TNNLS.2014.2317880
– ident: ref29
  doi: 10.1109/TNNLS.2016.2524621
– ident: ref42
  doi: 10.1109/TNNLS.2015.2507790
– ident: ref25
  doi: 10.1016/j.ins.2014.08.047
– ident: ref31
  doi: 10.1109/TCYB.2016.2536748
– volume: 19
  start-page: 520
  year: 2008
  ident: ref1
  article-title: Exponential stability of discrete-time genetic regulatory networks with delays
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.911748
– ident: ref43
  doi: 10.1109/TNNLS.2016.2599263
– ident: ref37
  doi: 10.1016/j.neucom.2012.01.027
– ident: ref20
  doi: 10.1109/TCYB.2015.2411285
– ident: ref33
  doi: 10.1109/TCYB.2016.2635122
– ident: ref34
  doi: 10.1002/rnc.1703
– ident: ref3
  doi: 10.1073/pnas.91.11.5022
– ident: ref11
  doi: 10.1109/TNNLS.2018.2874035
– ident: ref12
  doi: 10.1109/TNB.2013.2294478
– ident: ref7
  doi: 10.1109/TNNLS.2014.2387434
– ident: ref32
  doi: 10.1109/TNNLS.2015.2402691
– ident: ref15
  doi: 10.1109/TPWRD.2015.2460460
– ident: ref38
  doi: 10.1109/TAC.2017.2774006
– ident: ref14
  doi: 10.1016/j.jfranklin.2016.01.015
– ident: ref16
  doi: 10.1109/TNN.2011.2105501
– ident: ref19
  doi: 10.1109/TSMC.2016.2629464
– ident: ref22
  doi: 10.1109/TSP.2015.2424205
– ident: ref27
  doi: 10.1109/TNNLS.2015.2411734
– ident: ref41
  doi: 10.1109/TCNS.2017.2763756
– ident: ref40
  doi: 10.1016/j.automatica.2018.03.029
– ident: ref2
  doi: 10.1109/TCBB.2016.2552519
– ident: ref5
  doi: 10.1109/TNNLS.2016.2618899
– ident: ref26
  doi: 10.1109/TNNLS.2015.2511196
SSID ssj0000605649
Score 2.5430214
Snippet The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 762
SubjectTerms Convexity
Decoupling
Design of experiments
Discrete-time genetic regulatory networks (GRN)
distributed dissipative state estimation
Genetics
Learning systems
Markov chains
Markov jump parameters
Markov processes
Network topologies
Network topology
Networks
Optimization
Robot sensing systems
round-robin scheduling (RRS)
Scheduling
State estimation
Topology
Title Distributed Dissipative State Estimation for Markov Jump Genetic Regulatory Networks Subject to Round-Robin Scheduling
URI https://ieeexplore.ieee.org/document/8703433
https://www.ncbi.nlm.nih.gov/pubmed/31056522
https://www.proquest.com/docview/2372308698
https://www.proquest.com/docview/2232126445
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SHEouTdr04TQtKvTWemPrYdnH0CaE0OwhTWBvRpbHFFLWIetdSH59Z-QHtLSl4IPAkmwxM5pvpHkAfKgKbaosbWJtGxVrZJlLTRWTanOucWmFOcc7X86z8xt9sTCLLfg0xcIgYnA-wxk3w11-3fo1H5UdE28prdQ2bJPh1sdqTecpCeHyLKBdmWYylsouxhiZpDi-ns-_fmNHrmImi4Qx9C48UVx13kj5i0oKNVb-DjeD2jnbg8vxh3tvk9vZuqtm_vG3XI7_u6J9eDrgT3HSM8wz2MLlc9gbazuIQdQPYPOFM-pyMSysBbVXwfV6gyKgU3FKO0Mf9CgI9QqO-Gk34oJ4Q3Aia5pcXPVV7tv7BzHvfc1XgrYpPvcRXSuuuJ5THMLP6KvfSeNxYPwLuDk7vf58Hg81GmKvTNrFuVZVbZREZxxnOyOSu8Zj7nTqfGax8dInTW51U6MvnLWJ5xRfTnp6aPHqJews2yW-BtEoa2vjaAxW2praKUy8SrTPK9qVbRFBOpKp9EMCc66j8aMMhkxSlIHKJVO5HKgcwcdpzF2fvuOfvQ-YRFPPgToRHI3cUA4SviqJwch6y7Mij-D99Jpkky9c3BLbNfUhuJoy4jQRvOq5aJp7ZL7DP3_zDexKtuyDt9sR7HT3a3xL8Ker3gW-_wlGYAA-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIkEvFCiPQAEjwQllm_gRJwcOiLbatts9lK20t-A4DkigDepmF5Xfwl_hvzHjPCQQcKuElEOkOHY2-3nmszMzH8CLIpOqSOIqlLoSoXQ052JVhOjajKlMXLiU8p1Pp8n4XB7P1XwDvg-5MM45H3zmRnTqv-WXtV3RVtkeYktI0UtVn7jLr7hAW74-2sd_8yXnhwezt-Ow0xAIrVBxE6ZSFKUS3BllqBoXPpKprEuNjI1NtKsst1GValmVzmZG68hSCSrDLR44nMB-r8F15BmKt9lhww5OhCuBxPNrHic85ELP-6ycKNubTaeTdxQ6lo14FhFr34IbgnTuFee_OEGv6vJ3gusd3eE2_OhfURvf8mm0aoqR_fZb9cj_9R3ehlsdw2Zv2ilxBzbc4i5s9-oVrDNmO7Dep5rBJPflSobnSx9cvnbM8292gLavTetkyOsZ5TTVa3aM6GdUqhs7Z2fuA4mf1ReXbNpG0y8ZGmLa2WJNzc5IsSr0CXY46kf06ZT6fw_Or-TX34fNRb1wD4FVQutSGbzHFVKr0ggXWRFJmxbod3QWQNzDIrddiXZSCvmc-6ValOUeVTmhKu9QFcCr4Z4vbYGSf7beIUgMLTs0BLDboy_vbNgyR0Dj-jRNsjSA58NltD70ScksXL3CNkjIY-LUKoAHLWqHvnuwP_rzmM_g5nh2OsknR9OTx7DFaR_Dx_btwmZzsXJPkOw1xVM_5xi8v2qA_gSYlF9Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Dissipative+State+Estimation+for+Markov+Jump+Genetic+Regulatory+Networks+Subject+to+Round-Robin+Scheduling&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Shen%2C+Hao&rft.au=Huo%2C+Shicheng&rft.au=Huaicheng+Yan&rft.au=Park%2C+Ju+H&rft.date=2020-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=3&rft.spage=762&rft_id=info:doi/10.1109%2FTNNLS.2019.2909747&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon