Distributed Dissipative State Estimation for Markov Jump Genetic Regulatory Networks Subject to Round-Robin Scheduling
The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 31; no. 3; pp. 762 - 771 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly (Λ 1 , Λ 2 , Λ 3 )y-stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method. |
---|---|
AbstractList | The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly (Λ 1 , Λ 2 , Λ 3 )y-stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method. The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly [Formula Omitted]-[Formula Omitted]-stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method. The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly (Λ 1,Λ 2,Λ 3) - γ -stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method.The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly (Λ 1,Λ 2,Λ 3) - γ -stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method. The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly (Λ ,Λ ,Λ ) - γ -stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method. |
Author | Huo, Shicheng Yan, Huaicheng Sreeram, Victor Shen, Hao Park, Ju H. |
Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0001-7024-6573 surname: Shen fullname: Shen, Hao email: haoshen10@gmail.com organization: School of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan, China – sequence: 2 givenname: Shicheng orcidid: 0000-0002-4437-275X surname: Huo fullname: Huo, Shicheng email: shichenghuo123@gmail.com organization: School of Automation, Southeast University, Nanjing, China – sequence: 3 givenname: Huaicheng orcidid: 0000-0001-5496-1809 surname: Yan fullname: Yan, Huaicheng email: hcyan@ecust.edu.cn organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China – sequence: 4 givenname: Ju H. orcidid: 0000-0002-0218-2333 surname: Park fullname: Park, Ju H. email: jessie@ynu.ac.kr organization: Department of Electrical Engineering, Yeungnam University, Kyongsan, South Korea – sequence: 5 givenname: Victor orcidid: 0000-0001-6762-1504 surname: Sreeram fullname: Sreeram, Victor email: victor.sreeram@uwa.edu.au organization: School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Perth, WA, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31056522$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhS1UREvpHwAJWWLDZoJfM_YsUSkFFIKUFImd5fHcKU4n4-BHUP89bpN20QWWJV_Z37m6PuclOpr8BAi9pmRGKWk_XC0W89WMEdrOWEtaKeQzdMJowyrGlTp6rOWvY3QW45qU1ZC6Ee0LdMxpqWrGTtDuk4spuC4n6HGpo9ua5HaAV8kkwBcxuU258BMefMDfTbjxO_wtb7b4EiZIzuIlXOfRJB9u8QLSXx9uIl7lbg024eTx0uepr5a-cxNe2d_Q59FN16_Q88GMEc4O5yn6-fni6vxLNf9x-fX847yyvKapUoJ3fc0ZmNqwWgghBzNYUEZQYxsJg2WWDEqKoQfbGimJJaS8MVu2JJyfovf7vtvg_2SISW9ctDCOZgKfo2aMM8oaIeqCvnuCrn0OU5lOFxcZJ6ppVaHeHqjcbaDX21D8Cbf6wdECqD1gg48xwKCtS_cOpmDcqCnRd_np-_z0XX76kF-RsifSh-7_Fb3ZixwAPApU-bzgnP8DEf6nPA |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_amc_2022_127252 crossref_primary_10_1016_j_nahs_2021_101135 crossref_primary_10_1007_s11063_019_10175_w crossref_primary_10_1016_j_neucom_2021_03_022 crossref_primary_10_1002_asjc_2762 crossref_primary_10_1109_TCBB_2022_3173969 crossref_primary_10_1109_TFUZZ_2019_2935685 crossref_primary_10_1007_s12043_025_02891_x crossref_primary_10_1109_TNNLS_2019_2920368 crossref_primary_10_1016_j_jfranklin_2021_08_045 crossref_primary_10_1007_s11071_021_06263_z crossref_primary_10_1002_oca_2637 crossref_primary_10_1016_j_amc_2020_125662 crossref_primary_10_1016_j_amc_2020_125421 crossref_primary_10_1016_j_amc_2019_124838 crossref_primary_10_1080_00207721_2022_2056653 crossref_primary_10_1109_ACCESS_2019_2947513 crossref_primary_10_1109_TAC_2022_3170333 crossref_primary_10_1109_TSMC_2023_3262838 crossref_primary_10_1007_s00285_023_01924_6 crossref_primary_10_1109_TCBB_2021_3114405 crossref_primary_10_1016_j_cnsns_2023_107669 crossref_primary_10_1007_s00034_020_01343_8 crossref_primary_10_1016_j_amc_2020_125360 crossref_primary_10_1080_0952813X_2022_2115146 crossref_primary_10_1016_j_amc_2020_125630 crossref_primary_10_1007_s11071_021_06725_4 crossref_primary_10_1177_01423312221143269 crossref_primary_10_1007_s00521_022_07010_0 crossref_primary_10_1016_j_neucom_2021_07_093 crossref_primary_10_1016_j_ins_2024_120337 crossref_primary_10_1016_j_jfranklin_2021_10_043 crossref_primary_10_1109_TNNLS_2022_3230978 crossref_primary_10_1155_2023_1335184 crossref_primary_10_1007_s40314_021_01604_5 crossref_primary_10_1109_TCSI_2021_3077485 crossref_primary_10_1109_JIOT_2021_3068878 crossref_primary_10_1002_acs_3464 crossref_primary_10_1016_j_amc_2023_128043 crossref_primary_10_1007_s11071_020_05885_z crossref_primary_10_1016_j_jfranklin_2021_04_013 crossref_primary_10_1109_TFUZZ_2020_3046335 crossref_primary_10_1007_s12555_021_0872_8 crossref_primary_10_1016_j_amc_2020_125402 crossref_primary_10_1007_s11424_020_0106_9 crossref_primary_10_1016_j_amc_2020_125887 crossref_primary_10_1007_s12346_022_00575_0 crossref_primary_10_1016_j_jfranklin_2020_08_023 crossref_primary_10_1007_s12555_019_0818_6 crossref_primary_10_1016_j_amc_2020_125563 crossref_primary_10_1016_j_amc_2020_125401 crossref_primary_10_3934_math_2024185 crossref_primary_10_1007_s40815_021_01228_1 crossref_primary_10_1109_TCBB_2020_3040979 crossref_primary_10_1109_TNB_2021_3111109 crossref_primary_10_1109_TSMC_2023_3286846 crossref_primary_10_1016_j_neucom_2021_05_045 crossref_primary_10_1109_TSMC_2019_2956281 crossref_primary_10_1016_j_amc_2020_125384 crossref_primary_10_1049_iet_cta_2019_1476 crossref_primary_10_1016_j_jfranklin_2021_08_035 crossref_primary_10_1007_s11063_022_11010_5 crossref_primary_10_1016_j_jfranklin_2022_03_031 crossref_primary_10_3934_mbe_2022647 |
Cites_doi | 10.1016/j.neucom.2015.06.057 10.1109/TAC.2018.2797173 10.1109/TIE.2012.2213553 10.1109/TAC.2008.2007862 10.1002/cplx.21649 10.1109/TNNLS.2018.2817244 10.1016/j.inffus.2011.09.004 10.1016/j.mbs.2014.02.008 10.1016/j.fss.2018.01.017 10.1109/TNNLS.2017.2721448 10.1109/TNNLS.2016.2636875 10.1109/TSMC.2015.2435700 10.1049/iet-cta.2013.0040 10.1109/TNNLS.2014.2317880 10.1109/TNNLS.2016.2524621 10.1109/TNNLS.2015.2507790 10.1016/j.ins.2014.08.047 10.1109/TCYB.2016.2536748 10.1109/TNN.2007.911748 10.1109/TNNLS.2016.2599263 10.1016/j.neucom.2012.01.027 10.1109/TCYB.2015.2411285 10.1109/TCYB.2016.2635122 10.1002/rnc.1703 10.1073/pnas.91.11.5022 10.1109/TNNLS.2018.2874035 10.1109/TNB.2013.2294478 10.1109/TNNLS.2014.2387434 10.1109/TNNLS.2015.2402691 10.1109/TPWRD.2015.2460460 10.1109/TAC.2017.2774006 10.1016/j.jfranklin.2016.01.015 10.1109/TNN.2011.2105501 10.1109/TSMC.2016.2629464 10.1109/TSP.2015.2424205 10.1109/TNNLS.2015.2411734 10.1109/TCNS.2017.2763756 10.1016/j.automatica.2018.03.029 10.1109/TCBB.2016.2552519 10.1109/TNNLS.2016.2618899 10.1109/TNNLS.2015.2511196 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2019.2909747 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 771 |
ExternalDocumentID | 31056522 10_1109_TNNLS_2019_2909747 8703433 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2018M632206 funderid: 10.13039/501100002858 – fundername: National Research Foundation of Korea funderid: 10.13039/501100003725 – fundername: Ministry of Education grantid: NRF-2017R1A2B2004671 funderid: 10.13039/501100002701 – fundername: National Natural Science Foundation of China grantid: 61873002; 61703004; 61503002; 61673178 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Anhui Province grantid: 1708085MF165; 1808085QA18 funderid: 10.13039/501100003995 – fundername: University Excellent Young Talents Foundation of Anhui Province grantid: gxyqZD2017041 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-843bd532ea5a254447fafce8a41ac67efc2c0f874fdec9a770c0041a2ca2c7033 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 02:19:28 EDT 2025 Sun Jun 29 12:41:47 EDT 2025 Thu Jan 02 23:00:23 EST 2025 Tue Jul 01 00:27:30 EDT 2025 Thu Apr 24 22:50:51 EDT 2025 Wed Aug 27 02:35:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-843bd532ea5a254447fafce8a41ac67efc2c0f874fdec9a770c0041a2ca2c7033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7024-6573 0000-0001-6762-1504 0000-0002-4437-275X 0000-0001-5496-1809 0000-0002-0218-2333 |
PMID | 31056522 |
PQID | 2372308698 |
PQPubID | 85436 |
PageCount | 10 |
ParticipantIDs | pubmed_primary_31056522 crossref_primary_10_1109_TNNLS_2019_2909747 ieee_primary_8703433 proquest_miscellaneous_2232126445 proquest_journals_2372308698 crossref_citationtrail_10_1109_TNNLS_2019_2909747 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 cao (ref1) 2008; 19 ref2 ref39 ref17 ref38 ref16 ref19 ref18 yu (ref8) 2018; 29 xue (ref9) 2018; 29 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref7 ref4 ref3 ref6 ref5 ref40 wan (ref10) 0 |
References_xml | – ident: ref36 doi: 10.1016/j.neucom.2015.06.057 – ident: ref18 doi: 10.1109/TAC.2018.2797173 – ident: ref24 doi: 10.1109/TIE.2012.2213553 – ident: ref4 doi: 10.1109/TAC.2008.2007862 – ident: ref13 doi: 10.1002/cplx.21649 – volume: 29 start-page: 3047 year: 2018 ident: ref8 article-title: Stability analysis of genetic regulatory networks with switching parameters and time delays publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref21 doi: 10.1109/TNNLS.2018.2817244 – ident: ref23 doi: 10.1016/j.inffus.2011.09.004 – ident: ref35 doi: 10.1016/j.mbs.2014.02.008 – ident: ref39 doi: 10.1016/j.fss.2018.01.017 – volume: 29 start-page: 3404 year: 2018 ident: ref9 article-title: Model approximation for switched genetic regulatory networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2721448 – ident: ref30 doi: 10.1109/TNNLS.2016.2636875 – ident: ref17 doi: 10.1109/TSMC.2015.2435700 – year: 0 ident: ref10 article-title: A recursive approach to quantized $\mathcal{H}_\infty$ state estimation for genetic regulatory networks under stochastic communication protocols publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref28 doi: 10.1049/iet-cta.2013.0040 – ident: ref6 doi: 10.1109/TNNLS.2014.2317880 – ident: ref29 doi: 10.1109/TNNLS.2016.2524621 – ident: ref42 doi: 10.1109/TNNLS.2015.2507790 – ident: ref25 doi: 10.1016/j.ins.2014.08.047 – ident: ref31 doi: 10.1109/TCYB.2016.2536748 – volume: 19 start-page: 520 year: 2008 ident: ref1 article-title: Exponential stability of discrete-time genetic regulatory networks with delays publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2007.911748 – ident: ref43 doi: 10.1109/TNNLS.2016.2599263 – ident: ref37 doi: 10.1016/j.neucom.2012.01.027 – ident: ref20 doi: 10.1109/TCYB.2015.2411285 – ident: ref33 doi: 10.1109/TCYB.2016.2635122 – ident: ref34 doi: 10.1002/rnc.1703 – ident: ref3 doi: 10.1073/pnas.91.11.5022 – ident: ref11 doi: 10.1109/TNNLS.2018.2874035 – ident: ref12 doi: 10.1109/TNB.2013.2294478 – ident: ref7 doi: 10.1109/TNNLS.2014.2387434 – ident: ref32 doi: 10.1109/TNNLS.2015.2402691 – ident: ref15 doi: 10.1109/TPWRD.2015.2460460 – ident: ref38 doi: 10.1109/TAC.2017.2774006 – ident: ref14 doi: 10.1016/j.jfranklin.2016.01.015 – ident: ref16 doi: 10.1109/TNN.2011.2105501 – ident: ref19 doi: 10.1109/TSMC.2016.2629464 – ident: ref22 doi: 10.1109/TSP.2015.2424205 – ident: ref27 doi: 10.1109/TNNLS.2015.2411734 – ident: ref41 doi: 10.1109/TCNS.2017.2763756 – ident: ref40 doi: 10.1016/j.automatica.2018.03.029 – ident: ref2 doi: 10.1109/TCBB.2016.2552519 – ident: ref5 doi: 10.1109/TNNLS.2016.2618899 – ident: ref26 doi: 10.1109/TNNLS.2015.2511196 |
SSID | ssj0000605649 |
Score | 2.5430214 |
Snippet | The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 762 |
SubjectTerms | Convexity Decoupling Design of experiments Discrete-time genetic regulatory networks (GRN) distributed dissipative state estimation Genetics Learning systems Markov chains Markov jump parameters Markov processes Network topologies Network topology Networks Optimization Robot sensing systems round-robin scheduling (RRS) Scheduling State estimation Topology |
Title | Distributed Dissipative State Estimation for Markov Jump Genetic Regulatory Networks Subject to Round-Robin Scheduling |
URI | https://ieeexplore.ieee.org/document/8703433 https://www.ncbi.nlm.nih.gov/pubmed/31056522 https://www.proquest.com/docview/2372308698 https://www.proquest.com/docview/2232126445 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SHEouTdr04TQtKvTWemPrYdnH0CaE0OwhTWBvRpbHFFLWIetdSH59Z-QHtLSl4IPAkmwxM5pvpHkAfKgKbaosbWJtGxVrZJlLTRWTanOucWmFOcc7X86z8xt9sTCLLfg0xcIgYnA-wxk3w11-3fo1H5UdE28prdQ2bJPh1sdqTecpCeHyLKBdmWYylsouxhiZpDi-ns-_fmNHrmImi4Qx9C48UVx13kj5i0oKNVb-DjeD2jnbg8vxh3tvk9vZuqtm_vG3XI7_u6J9eDrgT3HSM8wz2MLlc9gbazuIQdQPYPOFM-pyMSysBbVXwfV6gyKgU3FKO0Mf9CgI9QqO-Gk34oJ4Q3Aia5pcXPVV7tv7BzHvfc1XgrYpPvcRXSuuuJ5THMLP6KvfSeNxYPwLuDk7vf58Hg81GmKvTNrFuVZVbZREZxxnOyOSu8Zj7nTqfGax8dInTW51U6MvnLWJ5xRfTnp6aPHqJews2yW-BtEoa2vjaAxW2praKUy8SrTPK9qVbRFBOpKp9EMCc66j8aMMhkxSlIHKJVO5HKgcwcdpzF2fvuOfvQ-YRFPPgToRHI3cUA4SviqJwch6y7Mij-D99Jpkky9c3BLbNfUhuJoy4jQRvOq5aJp7ZL7DP3_zDexKtuyDt9sR7HT3a3xL8Ker3gW-_wlGYAA- |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIkEvFCiPQAEjwQllm_gRJwcOiLbatts9lK20t-A4DkigDepmF5Xfwl_hvzHjPCQQcKuElEOkOHY2-3nmszMzH8CLIpOqSOIqlLoSoXQ052JVhOjajKlMXLiU8p1Pp8n4XB7P1XwDvg-5MM45H3zmRnTqv-WXtV3RVtkeYktI0UtVn7jLr7hAW74-2sd_8yXnhwezt-Ow0xAIrVBxE6ZSFKUS3BllqBoXPpKprEuNjI1NtKsst1GValmVzmZG68hSCSrDLR44nMB-r8F15BmKt9lhww5OhCuBxPNrHic85ELP-6ycKNubTaeTdxQ6lo14FhFr34IbgnTuFee_OEGv6vJ3gusd3eE2_OhfURvf8mm0aoqR_fZb9cj_9R3ehlsdw2Zv2ilxBzbc4i5s9-oVrDNmO7Dep5rBJPflSobnSx9cvnbM8292gLavTetkyOsZ5TTVa3aM6GdUqhs7Z2fuA4mf1ReXbNpG0y8ZGmLa2WJNzc5IsSr0CXY46kf06ZT6fw_Or-TX34fNRb1wD4FVQutSGbzHFVKr0ggXWRFJmxbod3QWQNzDIrddiXZSCvmc-6ValOUeVTmhKu9QFcCr4Z4vbYGSf7beIUgMLTs0BLDboy_vbNgyR0Dj-jRNsjSA58NltD70ScksXL3CNkjIY-LUKoAHLWqHvnuwP_rzmM_g5nh2OsknR9OTx7DFaR_Dx_btwmZzsXJPkOw1xVM_5xi8v2qA_gSYlF9Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Dissipative+State+Estimation+for+Markov+Jump+Genetic+Regulatory+Networks+Subject+to+Round-Robin+Scheduling&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Shen%2C+Hao&rft.au=Huo%2C+Shicheng&rft.au=Huaicheng+Yan&rft.au=Park%2C+Ju+H&rft.date=2020-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=3&rft.spage=762&rft_id=info:doi/10.1109%2FTNNLS.2019.2909747&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |