Distributed Dissipative State Estimation for Markov Jump Genetic Regulatory Networks Subject to Round-Robin Scheduling

The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 3; pp. 762 - 771
Main Authors Shen, Hao, Huo, Shicheng, Yan, Huaicheng, Park, Ju H., Sreeram, Victor
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly (Λ 1 , Λ 2 , Λ 3 )y-stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2019.2909747