A Fully Embedded Adaptive Real-Time Hand Gesture Classifier Leveraging HD-sEMG and Deep Learning

This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network (CNN) to classify hand-muscle contractions sensed at the forearm. The sensor consists in a custom non-intrusive, compact, and easy-to-install...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 14; no. 2; pp. 232 - 243
Main Authors Tam, Simon, Boukadoum, Mounir, Campeau-Lecours, Alexandre, Gosselin, Benoit
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network (CNN) to classify hand-muscle contractions sensed at the forearm. The sensor consists in a custom non-intrusive, compact, and easy-to-install 32-channel high-density surface electromyography (HDsEMG) electrode array, built on a flexible printed circuit board (PCB) to allow wrapping around the forearm. The sensor provides a low-noise digitization interface with wireless data transmission through an industrial, scientific and medical (ISM) radio link. An original frequency-time-space cross-domain preprocessing method is proposed to enhance gesture-specific data homogeneity and generate reliable muscle activation maps, leading to 98.15% accuracy when using a majority vote over 5 subsequent inferences by the proposed CNN. The obtained real-time gesture recognition, within 100 to 200 ms, and CNN properties show reliable and promising results to improve on the state-of-the-art of commercial hand prostheses. Moreover, edge computing using a specialized embedded artificial intelligence (AI) platform ensures reliable, secure and low latency real-time operation as well as quick and easy access to training, fine-tuning and calibration of the neural network. Co-design of the signal processing, AI algorithms and sensing hardware ensures a reliable and power-efficient embedded gesture recognition system.
AbstractList This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network (CNN) to classify hand-muscle contractions sensed at the forearm. The sensor consists in a custom non-intrusive, compact, and easy-to-install 32-channel high-density surface electromyography (HDsEMG) electrode array, built on a flexible printed circuit board (PCB) to allow wrapping around the forearm. The sensor provides a low-noise digitization interface with wireless data transmission through an industrial, scientific and medical (ISM) radio link. An original frequency-time-space cross-domain preprocessing method is proposed to enhance gesture-specific data homogeneity and generate reliable muscle activation maps, leading to 98.15% accuracy when using a majority vote over 5 subsequent inferences by the proposed CNN. The obtained real-time gesture recognition, within 100 to 200 ms, and CNN properties show reliable and promising results to improve on the state-of-the-art of commercial hand prostheses. Moreover, edge computing using a specialized embedded artificial intelligence (AI) platform ensures reliable, secure and low latency real-time operation as well as quick and easy access to training, fine-tuning and calibration of the neural network. Co-design of the signal processing, AI algorithms and sensing hardware ensures a reliable and power-efficient embedded gesture recognition system.This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network (CNN) to classify hand-muscle contractions sensed at the forearm. The sensor consists in a custom non-intrusive, compact, and easy-to-install 32-channel high-density surface electromyography (HDsEMG) electrode array, built on a flexible printed circuit board (PCB) to allow wrapping around the forearm. The sensor provides a low-noise digitization interface with wireless data transmission through an industrial, scientific and medical (ISM) radio link. An original frequency-time-space cross-domain preprocessing method is proposed to enhance gesture-specific data homogeneity and generate reliable muscle activation maps, leading to 98.15% accuracy when using a majority vote over 5 subsequent inferences by the proposed CNN. The obtained real-time gesture recognition, within 100 to 200 ms, and CNN properties show reliable and promising results to improve on the state-of-the-art of commercial hand prostheses. Moreover, edge computing using a specialized embedded artificial intelligence (AI) platform ensures reliable, secure and low latency real-time operation as well as quick and easy access to training, fine-tuning and calibration of the neural network. Co-design of the signal processing, AI algorithms and sensing hardware ensures a reliable and power-efficient embedded gesture recognition system.
This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network (CNN) to classify hand-muscle contractions sensed at the forearm. The sensor consists in a custom non-intrusive, compact, and easy-to-install 32-channel high-density surface electromyography (HDsEMG) electrode array, built on a flexible printed circuit board (PCB) to allow wrapping around the forearm. The sensor provides a low-noise digitization interface with wireless data transmission through an industrial, scientific and medical (ISM) radio link. An original frequency-time-space cross-domain preprocessing method is proposed to enhance gesture-specific data homogeneity and generate reliable muscle activation maps, leading to 98.15% accuracy when using a majority vote over 5 subsequent inferences by the proposed CNN. The obtained real-time gesture recognition, within 100 to 200 ms, and CNN properties show reliable and promising results to improve on the state-of-the-art of commercial hand prostheses. Moreover, edge computing using a specialized embedded artificial intelligence (AI) platform ensures reliable, secure and low latency real-time operation as well as quick and easy access to training, fine-tuning and calibration of the neural network. Co-design of the signal processing, AI algorithms and sensing hardware ensures a reliable and power-efficient embedded gesture recognition system.
This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network (CNN) to classify hand-muscle contractions sensed at the forearm. The sensor consists in a custom non-intrusive, compact, and easy-to-install 32-channel high-density surface electromyography (HDsEMG) electrode array, built on a flexible printed circuit board (PCB) to allow wrapping around the forearm. The sensor provides a low-noise digitization interface with wireless data transmission through an industrial, scientific and medical (ISM) radio link. An original frequency-time-space cross-domain preprocessing method is proposed to enhance gesture-specific data homogeneity and generate reliable muscle activation maps, leading to 98.15% accuracy when using a majority vote over 5 subsequent inferences by the proposed CNN. The obtained real-time gesture recognition, within 100 to 200 ms, and CNN properties show reliable and promising results to improve on the state-of-the-art of commercial hand prostheses. Moreover, edge computing using a specialized embedded artificial intelligence (AI) platform ensures reliable, secure and low latency real-time operation as well as quick and easy access to training, fine-tuning and calibration of the neural network. Co-design of the signal processing, AI algorithms and sensing hardware ensures a reliable and power-efficient embedded gesture recognition system.
Author Boukadoum, Mounir
Campeau-Lecours, Alexandre
Gosselin, Benoit
Tam, Simon
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0003-3918-7100
  surname: Tam
  fullname: Tam, Simon
  email: simon.tam.1@ulaval.ca
  organization: Department of Computer and Electrical Engineering, Université du Québec à Montréal, Montreal, QC, Canada
– sequence: 2
  givenname: Mounir
  orcidid: 0000-0002-4894-2350
  surname: Boukadoum
  fullname: Boukadoum, Mounir
  email: boukadoum.mounir@uqam.ca
  organization: Department of Computer Engineering, Université du Québec à Montréal, Montreal, QC, Canada
– sequence: 3
  givenname: Alexandre
  orcidid: 0000-0001-6766-3368
  surname: Campeau-Lecours
  fullname: Campeau-Lecours, Alexandre
  email: alexandre.campeau-lecours@gmc.ulaval.ca
  organization: Department of Mechanical Engineering, Université Laval, Québec, QC, Canada
– sequence: 4
  givenname: Benoit
  orcidid: 0000-0003-1473-3451
  surname: Gosselin
  fullname: Gosselin, Benoit
  email: Benoit.Gosselin@gel.ulaval.ca
  organization: Department of Computer and Electrical Engineering, Université du Québec à Montréal, Montreal, QC, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31765319$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URD_gD4CELHHhksVjx7F9XLbbXaRFSLCcg-NMKlf5WOykUv89TnfbQw-cZqR53plX816Ss37okZD3wBYAzHzZf10tfy04A7PgRsoih1fkAkzOMmMMO5t7wbNc5vKcXMZ4x5gsuOFvyLkAVUgB5oL8WdKbqW0f6LqrsK6xpsvaHkZ_j_Qn2jbb-w7p1vY13WAcp4B01doYfeMx0B3eY7C3vr-l2-ssrr9v6ExeIx7SzIY-Td6S141tI7471Svy-2a9X22z3Y_Nt9VylzkhYcy0cJwpZXQu8qbR0OhKco2iqh1zYJViTQ41KMcVLxp0zBbKudoyK6Q0phJX5PNx7yEMf6fktex8dNi2tsdhiiUXoJUQSkNCP71A74Yp9MldopIBEErM1McTNVUd1uUh-M6Gh_LpdwngR8CFIcaAzTMCrJwDKh8DKueAylNASaRfiJwf7eiHfgzWt_-XfjhKPSI-39IGgOe5-Aeu-pqy
CODEN ITBCCW
CitedBy_id crossref_primary_10_1016_j_cmpb_2020_105643
crossref_primary_10_1016_j_irbm_2024_100866
crossref_primary_10_1088_1741_2552_abd461
crossref_primary_10_1109_TMRB_2022_3176095
crossref_primary_10_1016_j_compbiomed_2024_109479
crossref_primary_10_3390_biomimetics10030166
crossref_primary_10_1109_TBCAS_2022_3222196
crossref_primary_10_1109_TBCAS_2022_3211424
crossref_primary_10_3389_fnins_2022_1020546
crossref_primary_10_1109_JBHI_2023_3330289
crossref_primary_10_3390_jimaging8060153
crossref_primary_10_1007_s10846_022_01666_5
crossref_primary_10_3389_fnbot_2022_853773
crossref_primary_10_1109_TIM_2023_3248084
crossref_primary_10_1109_TIM_2024_3497179
crossref_primary_10_1109_TII_2022_3182326
crossref_primary_10_1088_1741_2552_ac4f9a
crossref_primary_10_57197_JDR_2023_0017
crossref_primary_10_1016_j_future_2023_07_017
crossref_primary_10_1109_ACCESS_2021_3118281
crossref_primary_10_1109_TBCAS_2024_3415392
crossref_primary_10_1109_TBME_2023_3274053
crossref_primary_10_1016_j_engappai_2023_107669
crossref_primary_10_3389_fnins_2021_621885
crossref_primary_10_1007_s11517_020_02236_3
crossref_primary_10_1016_j_compbiomed_2022_105978
crossref_primary_10_1088_1741_2552_ac9860
crossref_primary_10_1016_j_icte_2023_04_005
crossref_primary_10_1109_TNSRE_2023_3237181
crossref_primary_10_1016_j_bspc_2022_103787
crossref_primary_10_1109_TIM_2024_3472778
crossref_primary_10_3389_fbioe_2022_833793
crossref_primary_10_1007_s11431_022_2345_2
crossref_primary_10_1109_TNSRE_2024_3521583
crossref_primary_10_1088_1742_6596_2327_1_012075
crossref_primary_10_1016_j_eswa_2024_124373
crossref_primary_10_1007_s00521_021_06729_6
crossref_primary_10_1109_JSEN_2020_3042540
crossref_primary_10_3390_s23042048
crossref_primary_10_1109_JSEN_2022_3194678
crossref_primary_10_1109_JSEN_2022_3204121
crossref_primary_10_3389_fnbot_2022_1072365
crossref_primary_10_1016_j_bspc_2024_107403
crossref_primary_10_1038_s41928_020_00526_0
crossref_primary_10_1080_0954898X_2024_2389231
crossref_primary_10_1016_j_ins_2021_11_065
crossref_primary_10_1109_TNNLS_2021_3105595
crossref_primary_10_1016_j_compeleceng_2022_107836
crossref_primary_10_1016_j_asoc_2024_112235
crossref_primary_10_3390_s20092467
crossref_primary_10_1109_TNSRE_2023_3298797
crossref_primary_10_1109_JBHI_2024_3417236
crossref_primary_10_1109_MSMC_2023_3238855
crossref_primary_10_1186_s12913_022_08095_y
crossref_primary_10_1016_j_ins_2024_120667
crossref_primary_10_1109_TBCAS_2024_3410840
crossref_primary_10_1183_13993003_00844_2021
crossref_primary_10_1109_TBCAS_2022_3161133
crossref_primary_10_1016_j_irbm_2023_100773
crossref_primary_10_3390_s21030846
crossref_primary_10_1016_j_ins_2022_05_085
crossref_primary_10_1017_S026357472200131X
crossref_primary_10_1021_acssensors_4c00604
crossref_primary_10_1007_s44174_022_00002_7
crossref_primary_10_3389_fnhum_2022_949224
crossref_primary_10_1007_s12559_022_10027_1
crossref_primary_10_1371_journal_pone_0246870
crossref_primary_10_1109_TIM_2024_3381288
crossref_primary_10_1109_TIM_2023_3323962
crossref_primary_10_1016_j_bspc_2023_105854
crossref_primary_10_1109_LRA_2021_3091698
crossref_primary_10_2174_1573405620666230530093026
crossref_primary_10_1109_TAI_2021_3098253
crossref_primary_10_1109_TFUZZ_2022_3198172
crossref_primary_10_1109_JAS_2021_1003865
crossref_primary_10_1155_2022_6488599
crossref_primary_10_1109_JSEN_2022_3179472
crossref_primary_10_1007_s40747_020_00194_9
crossref_primary_10_1109_TIM_2024_3502881
crossref_primary_10_3390_electronics11060968
crossref_primary_10_1007_s00132_023_04400_7
crossref_primary_10_1109_TIM_2023_3243614
crossref_primary_10_1038_s41598_021_90688_4
crossref_primary_10_1109_LRA_2021_3062320
crossref_primary_10_3390_s22249949
crossref_primary_10_1109_LRA_2022_3142721
crossref_primary_10_1109_TBME_2021_3131297
crossref_primary_10_1109_ACCESS_2021_3123297
Cites_doi 10.1109/TNSRE.2007.891391
10.2147/MDER.S91102
10.1109/TBME.2017.2657121
10.1109/ICORR.2017.8009316
10.1109/ROBIO.2016.7866485
10.1109/ISCAS.2018.8351613
10.1109/EMBC.2019.8857750
10.1109/GCCE.2015.7398619
10.1109/BioRob.2012.6290287
10.1682/JRRD.2010.08.0161
10.1038/s41598-017-04255-x
10.1109/TNSRE.2019.2896269
10.1038/srep36571
10.3389/fnins.2016.00209
10.1109/EECSI.2017.8239091
10.1109/EMBC.2018.8512820
10.1007/s00421-010-1521-8
10.1109/TBME.2003.813539
10.1007/978-0-387-77064-2_30
10.1055/s-0035-1544171
10.1186/1743-0003-9-85
10.1109/TBME.2006.883695
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
DOI 10.1109/TBCAS.2019.2955641
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Biotechnology Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 243
ExternalDocumentID 31765319
10_1109_TBCAS_2019_2955641
8911244
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Center for Interdisciplinary Research in Rehabilitation and Social Integration
– fundername: Microsystems Strategic Alliance of Quebec
– fundername: Canada Research Chairs
  funderid: 10.13039/501100001804
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c351t-83c207798434ff81f8b528e3bdc0c1a770f41d17c2726fec0a67ccda0a35599b3
IEDL.DBID RIE
ISSN 1932-4545
1940-9990
IngestDate Fri Jul 11 01:37:33 EDT 2025
Mon Jun 30 08:40:29 EDT 2025
Thu Apr 03 07:04:23 EDT 2025
Tue Jul 01 03:26:34 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
Wed Aug 27 06:29:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-83c207798434ff81f8b528e3bdc0c1a770f41d17c2726fec0a67ccda0a35599b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6766-3368
0000-0002-4894-2350
0000-0003-1473-3451
0000-0003-3918-7100
PMID 31765319
PQID 2384313731
PQPubID 85510
PageCount 12
ParticipantIDs crossref_primary_10_1109_TBCAS_2019_2955641
proquest_miscellaneous_2318733781
proquest_journals_2384313731
pubmed_primary_31765319
crossref_citationtrail_10_1109_TBCAS_2019_2955641
ieee_primary_8911244
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref30
ref11
ref10
jayalakshmi (ref21) 2011; 3
(ref7) 0
ref2
lecun (ref23) 1995
ref1
ref17
ref16
luca (ref18) 0
(ref9) 0
ref19
(ref31) 0
(ref24) 0
ref26
ref20
ref22
(ref8) 0
ref28
ref27
(ref32) 0
chu (ref14) 2006; 53
ref29
ref4
ref3
ref6
ref5
(ref25) 0
References_xml – ident: ref12
  doi: 10.1109/TNSRE.2007.891391
– ident: ref4
  doi: 10.2147/MDER.S91102
– year: 0
  ident: ref32
  article-title: Tiber HDsEMG biofeedback array system
– ident: ref19
  doi: 10.1109/TBME.2017.2657121
– start-page: 255
  year: 1995
  ident: ref23
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The Handbook of Brain Theory and Neural Networks
– year: 0
  ident: ref7
  article-title: Bebionic prosthesis
– ident: ref29
  doi: 10.1109/ICORR.2017.8009316
– ident: ref16
  doi: 10.1109/ROBIO.2016.7866485
– year: 0
  ident: ref8
  article-title: Hero arm prosthesis
– ident: ref28
  doi: 10.1109/ISCAS.2018.8351613
– ident: ref17
  doi: 10.1109/EMBC.2019.8857750
– ident: ref30
  doi: 10.1109/GCCE.2015.7398619
– ident: ref26
  doi: 10.1109/BioRob.2012.6290287
– ident: ref6
  doi: 10.1682/JRRD.2010.08.0161
– ident: ref27
  doi: 10.1038/s41598-017-04255-x
– ident: ref22
  doi: 10.1109/TNSRE.2019.2896269
– ident: ref15
  doi: 10.1038/srep36571
– ident: ref5
  doi: 10.3389/fnins.2016.00209
– ident: ref3
  doi: 10.1109/EECSI.2017.8239091
– year: 0
  ident: ref25
  article-title: NVidia Jetson Nano computer for embedded and AI IoT
– ident: ref11
  doi: 10.1109/EMBC.2018.8512820
– ident: ref20
  doi: 10.1007/s00421-010-1521-8
– start-page: 2
  year: 0
  ident: ref18
  article-title: Surface electromyography: Detection and recording
– volume: 3
  start-page: 1793
  year: 2011
  ident: ref21
  article-title: Statistical normalization and back propagation for classification
  publication-title: Int J Comput Theory Eng
– ident: ref13
  doi: 10.1109/TBME.2003.813539
– year: 0
  ident: ref31
  article-title: SAGA 32/64+ data recorder and docking station for electrophysiological measurements
– ident: ref1
  doi: 10.1007/978-0-387-77064-2_30
– ident: ref2
  doi: 10.1055/s-0035-1544171
– ident: ref10
  doi: 10.1186/1743-0003-9-85
– year: 0
  ident: ref9
  article-title: I-limb prosthesis
– volume: 53
  start-page: 2232
  year: 2006
  ident: ref14
  article-title: A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.883695
– year: 0
  ident: ref24
  article-title: PyTorch open source machine learning framework
SSID ssj0056292
Score 2.5358593
Snippet This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 232
SubjectTerms Algorithms
Armband
Artificial intelligence
Artificial Limbs
Artificial neural networks
Circuit boards
Co-design
Control
Convolution
Data processing
Data transmission
Deep Learning
Edge Computing
Electrodes
Electromyography
Electromyography - instrumentation
Equipment Design
Forearm
Forearm - physiology
Gesture
Gesture recognition
Gestures
Hand - physiology
HD-EMG
Homogeneity
Humans
Latency
Machine Learning
Motion
Muscle contraction
Muscle, Skeletal - physiology
Muscles
Muscular function
Myoelectric
Neural Network
Neural networks
Printed circuits
Prostheses
Prosthetic Hand
Prosthetics
Real time operation
Real-Time
Real-time systems
Recognition
Signal processing
Signal Processing, Computer-Assisted - instrumentation
Title A Fully Embedded Adaptive Real-Time Hand Gesture Classifier Leveraging HD-sEMG and Deep Learning
URI https://ieeexplore.ieee.org/document/8911244
https://www.ncbi.nlm.nih.gov/pubmed/31765319
https://www.proquest.com/docview/2384313731
https://www.proquest.com/docview/2318733781
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuAAhfJYaJGRuIG3cezE9nHbbrtCLAdopd6C7dgVArKrdnOAX98Z5yFAgLhFyjixNZ6Zb-x5EPLKAkaIpY2s8EEyqWrDQOflzJTWGe6NsRbPIZfvy8WFfHtZXG6RN2MuTAghBZ-FKT6mu_x65Vs8KjvUIJlgjrbJNjhuXa7WoHXBjKcGyIhHsI53MSTIZObw_Oh49hGjuMw0N0VRSv6LEUpdVf4OMJOhOb1PlsMUu_iSL9N246b-x2_VG_93DbvkXo846azbIg_IVmgekrs_1SHcI59mFF3R73T-zQXQRDWd1XaNipB-ACDJME-ELmxT0zOYeXsdaOql-TmCTaXvAkhD6nVEFyfsZr48o0h5EsKa9tVbrx6Ri9P5-fGC9a0XmBcF3zAtfJ4pZbQUMkbNo3ZFroNwtc88t0plUfKaK5-rvIzBZ7ZU3tc2swJLmDnxmOw0qyY8JdRJJ7WT4MeAZ8Z9NIXTZRbBcYqhiCpOCB94Ufm-Ljm2x_haJf8kM1XiX4X8q3r-Tcjrccy6q8rxT-o95MNI2bNgQvYHlle94N5UgGAAUgklYNTL8TWIHN6j2CasWqThWgmhNNA86bbK-G2AYyWqtWd__udzcidHhz2F_uyTnc11Gw4A1Wzci7SdbwEUcu-0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOQAHCpTH0gJG4gbZxrEd28el3TbAbg-wlXpLbcdGVSG7ajcH-PWMnYdoBYhbpIwTW-OZ-caeB0JvNGAEn2ufcOtYwkSlEtB5WaJybRSxSmkdziHnx3lxwj6e8tMN9G7IhXHOxeAzNw6P8S6_WtomHJXtSZBMMEe30G2w-5y02Vq93gVDHlsgB0QSKnnzPkUmVXuL9_uTLyGOS40zxXnOyDUzFPuq_B1iRlNzuIXm_STbCJOLcbM2Y_vzRv3G_13FA3S_w5x40m6Sh2jD1Y_Qvd8qEW6jswkOzugPPP1uHOiiCk8qvQqqEH8GKJmETBFc6LrCRzDz5tLh2E3z3INVxTMH8hC7HeHiILmazo9woDxwboW7-q1fH6OTw-liv0i65guJpZysE0ltlgqhJKPMe0m8NDyTjprKppZoIVLPSEWEzUSWe2dTnQtrK51qGoqYGfoEbdbL2j1D2DDDpGHgyYBvRqxX3Mg89eA6ece98CNEel6UtqtMHhpkfCujh5KqMvKvDPwrO_6N0NthzKqty_FP6u3Ah4GyY8EI7fYsLzvRvSoBwwCoooLCqNfDaxC6cJOia7dsAg2RglIhgeZpu1WGbwMgy4Nie_7nf75Cd4rFfFbOPhx_2kF3s-C-x0CgXbS5vmzcC8A4a_Mybu1fvify_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fully+Embedded+Adaptive+Real-Time+Hand+Gesture+Classifier+Leveraging+HD-sEMG+and+Deep+Learning&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Tam%2C+Simon&rft.au=Boukadoum%2C+Mounir&rft.au=Campeau-Lecours%2C+Alexandre&rft.au=Gosselin%2C+Benoit&rft.date=2020-04-01&rft.eissn=1940-9990&rft.volume=14&rft.issue=2&rft.spage=232&rft_id=info:doi/10.1109%2FTBCAS.2019.2955641&rft_id=info%3Apmid%2F31765319&rft.externalDocID=31765319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon