A Fully Embedded Adaptive Real-Time Hand Gesture Classifier Leveraging HD-sEMG and Deep Learning
This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network (CNN) to classify hand-muscle contractions sensed at the forearm. The sensor consists in a custom non-intrusive, compact, and easy-to-install...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 14; no. 2; pp. 232 - 243 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network (CNN) to classify hand-muscle contractions sensed at the forearm. The sensor consists in a custom non-intrusive, compact, and easy-to-install 32-channel high-density surface electromyography (HDsEMG) electrode array, built on a flexible printed circuit board (PCB) to allow wrapping around the forearm. The sensor provides a low-noise digitization interface with wireless data transmission through an industrial, scientific and medical (ISM) radio link. An original frequency-time-space cross-domain preprocessing method is proposed to enhance gesture-specific data homogeneity and generate reliable muscle activation maps, leading to 98.15% accuracy when using a majority vote over 5 subsequent inferences by the proposed CNN. The obtained real-time gesture recognition, within 100 to 200 ms, and CNN properties show reliable and promising results to improve on the state-of-the-art of commercial hand prostheses. Moreover, edge computing using a specialized embedded artificial intelligence (AI) platform ensures reliable, secure and low latency real-time operation as well as quick and easy access to training, fine-tuning and calibration of the neural network. Co-design of the signal processing, AI algorithms and sensing hardware ensures a reliable and power-efficient embedded gesture recognition system. |
---|---|
AbstractList | This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network (CNN) to classify hand-muscle contractions sensed at the forearm. The sensor consists in a custom non-intrusive, compact, and easy-to-install 32-channel high-density surface electromyography (HDsEMG) electrode array, built on a flexible printed circuit board (PCB) to allow wrapping around the forearm. The sensor provides a low-noise digitization interface with wireless data transmission through an industrial, scientific and medical (ISM) radio link. An original frequency-time-space cross-domain preprocessing method is proposed to enhance gesture-specific data homogeneity and generate reliable muscle activation maps, leading to 98.15% accuracy when using a majority vote over 5 subsequent inferences by the proposed CNN. The obtained real-time gesture recognition, within 100 to 200 ms, and CNN properties show reliable and promising results to improve on the state-of-the-art of commercial hand prostheses. Moreover, edge computing using a specialized embedded artificial intelligence (AI) platform ensures reliable, secure and low latency real-time operation as well as quick and easy access to training, fine-tuning and calibration of the neural network. Co-design of the signal processing, AI algorithms and sensing hardware ensures a reliable and power-efficient embedded gesture recognition system.This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network (CNN) to classify hand-muscle contractions sensed at the forearm. The sensor consists in a custom non-intrusive, compact, and easy-to-install 32-channel high-density surface electromyography (HDsEMG) electrode array, built on a flexible printed circuit board (PCB) to allow wrapping around the forearm. The sensor provides a low-noise digitization interface with wireless data transmission through an industrial, scientific and medical (ISM) radio link. An original frequency-time-space cross-domain preprocessing method is proposed to enhance gesture-specific data homogeneity and generate reliable muscle activation maps, leading to 98.15% accuracy when using a majority vote over 5 subsequent inferences by the proposed CNN. The obtained real-time gesture recognition, within 100 to 200 ms, and CNN properties show reliable and promising results to improve on the state-of-the-art of commercial hand prostheses. Moreover, edge computing using a specialized embedded artificial intelligence (AI) platform ensures reliable, secure and low latency real-time operation as well as quick and easy access to training, fine-tuning and calibration of the neural network. Co-design of the signal processing, AI algorithms and sensing hardware ensures a reliable and power-efficient embedded gesture recognition system. This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network (CNN) to classify hand-muscle contractions sensed at the forearm. The sensor consists in a custom non-intrusive, compact, and easy-to-install 32-channel high-density surface electromyography (HDsEMG) electrode array, built on a flexible printed circuit board (PCB) to allow wrapping around the forearm. The sensor provides a low-noise digitization interface with wireless data transmission through an industrial, scientific and medical (ISM) radio link. An original frequency-time-space cross-domain preprocessing method is proposed to enhance gesture-specific data homogeneity and generate reliable muscle activation maps, leading to 98.15% accuracy when using a majority vote over 5 subsequent inferences by the proposed CNN. The obtained real-time gesture recognition, within 100 to 200 ms, and CNN properties show reliable and promising results to improve on the state-of-the-art of commercial hand prostheses. Moreover, edge computing using a specialized embedded artificial intelligence (AI) platform ensures reliable, secure and low latency real-time operation as well as quick and easy access to training, fine-tuning and calibration of the neural network. Co-design of the signal processing, AI algorithms and sensing hardware ensures a reliable and power-efficient embedded gesture recognition system. This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network (CNN) to classify hand-muscle contractions sensed at the forearm. The sensor consists in a custom non-intrusive, compact, and easy-to-install 32-channel high-density surface electromyography (HDsEMG) electrode array, built on a flexible printed circuit board (PCB) to allow wrapping around the forearm. The sensor provides a low-noise digitization interface with wireless data transmission through an industrial, scientific and medical (ISM) radio link. An original frequency-time-space cross-domain preprocessing method is proposed to enhance gesture-specific data homogeneity and generate reliable muscle activation maps, leading to 98.15% accuracy when using a majority vote over 5 subsequent inferences by the proposed CNN. The obtained real-time gesture recognition, within 100 to 200 ms, and CNN properties show reliable and promising results to improve on the state-of-the-art of commercial hand prostheses. Moreover, edge computing using a specialized embedded artificial intelligence (AI) platform ensures reliable, secure and low latency real-time operation as well as quick and easy access to training, fine-tuning and calibration of the neural network. Co-design of the signal processing, AI algorithms and sensing hardware ensures a reliable and power-efficient embedded gesture recognition system. |
Author | Boukadoum, Mounir Campeau-Lecours, Alexandre Gosselin, Benoit Tam, Simon |
Author_xml | – sequence: 1 givenname: Simon orcidid: 0000-0003-3918-7100 surname: Tam fullname: Tam, Simon email: simon.tam.1@ulaval.ca organization: Department of Computer and Electrical Engineering, Université du Québec à Montréal, Montreal, QC, Canada – sequence: 2 givenname: Mounir orcidid: 0000-0002-4894-2350 surname: Boukadoum fullname: Boukadoum, Mounir email: boukadoum.mounir@uqam.ca organization: Department of Computer Engineering, Université du Québec à Montréal, Montreal, QC, Canada – sequence: 3 givenname: Alexandre orcidid: 0000-0001-6766-3368 surname: Campeau-Lecours fullname: Campeau-Lecours, Alexandre email: alexandre.campeau-lecours@gmc.ulaval.ca organization: Department of Mechanical Engineering, Université Laval, Québec, QC, Canada – sequence: 4 givenname: Benoit orcidid: 0000-0003-1473-3451 surname: Gosselin fullname: Gosselin, Benoit email: Benoit.Gosselin@gel.ulaval.ca organization: Department of Computer and Electrical Engineering, Université du Québec à Montréal, Montreal, QC, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31765319$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URD_gD4CELHHhksVjx7F9XLbbXaRFSLCcg-NMKlf5WOykUv89TnfbQw-cZqR53plX816Ss37okZD3wBYAzHzZf10tfy04A7PgRsoih1fkAkzOMmMMO5t7wbNc5vKcXMZ4x5gsuOFvyLkAVUgB5oL8WdKbqW0f6LqrsK6xpsvaHkZ_j_Qn2jbb-w7p1vY13WAcp4B01doYfeMx0B3eY7C3vr-l2-ssrr9v6ExeIx7SzIY-Td6S141tI7471Svy-2a9X22z3Y_Nt9VylzkhYcy0cJwpZXQu8qbR0OhKco2iqh1zYJViTQ41KMcVLxp0zBbKudoyK6Q0phJX5PNx7yEMf6fktex8dNi2tsdhiiUXoJUQSkNCP71A74Yp9MldopIBEErM1McTNVUd1uUh-M6Gh_LpdwngR8CFIcaAzTMCrJwDKh8DKueAylNASaRfiJwf7eiHfgzWt_-XfjhKPSI-39IGgOe5-Aeu-pqy |
CODEN | ITBCCW |
CitedBy_id | crossref_primary_10_1016_j_cmpb_2020_105643 crossref_primary_10_1016_j_irbm_2024_100866 crossref_primary_10_1088_1741_2552_abd461 crossref_primary_10_1109_TMRB_2022_3176095 crossref_primary_10_1016_j_compbiomed_2024_109479 crossref_primary_10_3390_biomimetics10030166 crossref_primary_10_1109_TBCAS_2022_3222196 crossref_primary_10_1109_TBCAS_2022_3211424 crossref_primary_10_3389_fnins_2022_1020546 crossref_primary_10_1109_JBHI_2023_3330289 crossref_primary_10_3390_jimaging8060153 crossref_primary_10_1007_s10846_022_01666_5 crossref_primary_10_3389_fnbot_2022_853773 crossref_primary_10_1109_TIM_2023_3248084 crossref_primary_10_1109_TIM_2024_3497179 crossref_primary_10_1109_TII_2022_3182326 crossref_primary_10_1088_1741_2552_ac4f9a crossref_primary_10_57197_JDR_2023_0017 crossref_primary_10_1016_j_future_2023_07_017 crossref_primary_10_1109_ACCESS_2021_3118281 crossref_primary_10_1109_TBCAS_2024_3415392 crossref_primary_10_1109_TBME_2023_3274053 crossref_primary_10_1016_j_engappai_2023_107669 crossref_primary_10_3389_fnins_2021_621885 crossref_primary_10_1007_s11517_020_02236_3 crossref_primary_10_1016_j_compbiomed_2022_105978 crossref_primary_10_1088_1741_2552_ac9860 crossref_primary_10_1016_j_icte_2023_04_005 crossref_primary_10_1109_TNSRE_2023_3237181 crossref_primary_10_1016_j_bspc_2022_103787 crossref_primary_10_1109_TIM_2024_3472778 crossref_primary_10_3389_fbioe_2022_833793 crossref_primary_10_1007_s11431_022_2345_2 crossref_primary_10_1109_TNSRE_2024_3521583 crossref_primary_10_1088_1742_6596_2327_1_012075 crossref_primary_10_1016_j_eswa_2024_124373 crossref_primary_10_1007_s00521_021_06729_6 crossref_primary_10_1109_JSEN_2020_3042540 crossref_primary_10_3390_s23042048 crossref_primary_10_1109_JSEN_2022_3194678 crossref_primary_10_1109_JSEN_2022_3204121 crossref_primary_10_3389_fnbot_2022_1072365 crossref_primary_10_1016_j_bspc_2024_107403 crossref_primary_10_1038_s41928_020_00526_0 crossref_primary_10_1080_0954898X_2024_2389231 crossref_primary_10_1016_j_ins_2021_11_065 crossref_primary_10_1109_TNNLS_2021_3105595 crossref_primary_10_1016_j_compeleceng_2022_107836 crossref_primary_10_1016_j_asoc_2024_112235 crossref_primary_10_3390_s20092467 crossref_primary_10_1109_TNSRE_2023_3298797 crossref_primary_10_1109_JBHI_2024_3417236 crossref_primary_10_1109_MSMC_2023_3238855 crossref_primary_10_1186_s12913_022_08095_y crossref_primary_10_1016_j_ins_2024_120667 crossref_primary_10_1109_TBCAS_2024_3410840 crossref_primary_10_1183_13993003_00844_2021 crossref_primary_10_1109_TBCAS_2022_3161133 crossref_primary_10_1016_j_irbm_2023_100773 crossref_primary_10_3390_s21030846 crossref_primary_10_1016_j_ins_2022_05_085 crossref_primary_10_1017_S026357472200131X crossref_primary_10_1021_acssensors_4c00604 crossref_primary_10_1007_s44174_022_00002_7 crossref_primary_10_3389_fnhum_2022_949224 crossref_primary_10_1007_s12559_022_10027_1 crossref_primary_10_1371_journal_pone_0246870 crossref_primary_10_1109_TIM_2024_3381288 crossref_primary_10_1109_TIM_2023_3323962 crossref_primary_10_1016_j_bspc_2023_105854 crossref_primary_10_1109_LRA_2021_3091698 crossref_primary_10_2174_1573405620666230530093026 crossref_primary_10_1109_TAI_2021_3098253 crossref_primary_10_1109_TFUZZ_2022_3198172 crossref_primary_10_1109_JAS_2021_1003865 crossref_primary_10_1155_2022_6488599 crossref_primary_10_1109_JSEN_2022_3179472 crossref_primary_10_1007_s40747_020_00194_9 crossref_primary_10_1109_TIM_2024_3502881 crossref_primary_10_3390_electronics11060968 crossref_primary_10_1007_s00132_023_04400_7 crossref_primary_10_1109_TIM_2023_3243614 crossref_primary_10_1038_s41598_021_90688_4 crossref_primary_10_1109_LRA_2021_3062320 crossref_primary_10_3390_s22249949 crossref_primary_10_1109_LRA_2022_3142721 crossref_primary_10_1109_TBME_2021_3131297 crossref_primary_10_1109_ACCESS_2021_3123297 |
Cites_doi | 10.1109/TNSRE.2007.891391 10.2147/MDER.S91102 10.1109/TBME.2017.2657121 10.1109/ICORR.2017.8009316 10.1109/ROBIO.2016.7866485 10.1109/ISCAS.2018.8351613 10.1109/EMBC.2019.8857750 10.1109/GCCE.2015.7398619 10.1109/BioRob.2012.6290287 10.1682/JRRD.2010.08.0161 10.1038/s41598-017-04255-x 10.1109/TNSRE.2019.2896269 10.1038/srep36571 10.3389/fnins.2016.00209 10.1109/EECSI.2017.8239091 10.1109/EMBC.2018.8512820 10.1007/s00421-010-1521-8 10.1109/TBME.2003.813539 10.1007/978-0-387-77064-2_30 10.1055/s-0035-1544171 10.1186/1743-0003-9-85 10.1109/TBME.2006.883695 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
DOI | 10.1109/TBCAS.2019.2955641 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1940-9990 |
EndPage | 243 |
ExternalDocumentID | 31765319 10_1109_TBCAS_2019_2955641 8911244 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Center for Interdisciplinary Research in Rehabilitation and Social Integration – fundername: Microsystems Strategic Alliance of Quebec – fundername: Canada Research Chairs funderid: 10.13039/501100001804 – fundername: Natural Sciences and Engineering Research Council of Canada funderid: 10.13039/501100000038 |
GroupedDBID | --- 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
ID | FETCH-LOGICAL-c351t-83c207798434ff81f8b528e3bdc0c1a770f41d17c2726fec0a67ccda0a35599b3 |
IEDL.DBID | RIE |
ISSN | 1932-4545 1940-9990 |
IngestDate | Fri Jul 11 01:37:33 EDT 2025 Mon Jun 30 08:40:29 EDT 2025 Thu Apr 03 07:04:23 EDT 2025 Tue Jul 01 03:26:34 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 Wed Aug 27 06:29:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-83c207798434ff81f8b528e3bdc0c1a770f41d17c2726fec0a67ccda0a35599b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6766-3368 0000-0002-4894-2350 0000-0003-1473-3451 0000-0003-3918-7100 |
PMID | 31765319 |
PQID | 2384313731 |
PQPubID | 85510 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TBCAS_2019_2955641 proquest_miscellaneous_2318733781 proquest_journals_2384313731 pubmed_primary_31765319 crossref_citationtrail_10_1109_TBCAS_2019_2955641 ieee_primary_8911244 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical circuits and systems |
PublicationTitleAbbrev | TBCAS |
PublicationTitleAlternate | IEEE Trans Biomed Circuits Syst |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref30 ref11 ref10 jayalakshmi (ref21) 2011; 3 (ref7) 0 ref2 lecun (ref23) 1995 ref1 ref17 ref16 luca (ref18) 0 (ref9) 0 ref19 (ref31) 0 (ref24) 0 ref26 ref20 ref22 (ref8) 0 ref28 ref27 (ref32) 0 chu (ref14) 2006; 53 ref29 ref4 ref3 ref6 ref5 (ref25) 0 |
References_xml | – ident: ref12 doi: 10.1109/TNSRE.2007.891391 – ident: ref4 doi: 10.2147/MDER.S91102 – year: 0 ident: ref32 article-title: Tiber HDsEMG biofeedback array system – ident: ref19 doi: 10.1109/TBME.2017.2657121 – start-page: 255 year: 1995 ident: ref23 article-title: Convolutional networks for images, speech, and time series publication-title: The Handbook of Brain Theory and Neural Networks – year: 0 ident: ref7 article-title: Bebionic prosthesis – ident: ref29 doi: 10.1109/ICORR.2017.8009316 – ident: ref16 doi: 10.1109/ROBIO.2016.7866485 – year: 0 ident: ref8 article-title: Hero arm prosthesis – ident: ref28 doi: 10.1109/ISCAS.2018.8351613 – ident: ref17 doi: 10.1109/EMBC.2019.8857750 – ident: ref30 doi: 10.1109/GCCE.2015.7398619 – ident: ref26 doi: 10.1109/BioRob.2012.6290287 – ident: ref6 doi: 10.1682/JRRD.2010.08.0161 – ident: ref27 doi: 10.1038/s41598-017-04255-x – ident: ref22 doi: 10.1109/TNSRE.2019.2896269 – ident: ref15 doi: 10.1038/srep36571 – ident: ref5 doi: 10.3389/fnins.2016.00209 – ident: ref3 doi: 10.1109/EECSI.2017.8239091 – year: 0 ident: ref25 article-title: NVidia Jetson Nano computer for embedded and AI IoT – ident: ref11 doi: 10.1109/EMBC.2018.8512820 – ident: ref20 doi: 10.1007/s00421-010-1521-8 – start-page: 2 year: 0 ident: ref18 article-title: Surface electromyography: Detection and recording – volume: 3 start-page: 1793 year: 2011 ident: ref21 article-title: Statistical normalization and back propagation for classification publication-title: Int J Comput Theory Eng – ident: ref13 doi: 10.1109/TBME.2003.813539 – year: 0 ident: ref31 article-title: SAGA 32/64+ data recorder and docking station for electrophysiological measurements – ident: ref1 doi: 10.1007/978-0-387-77064-2_30 – ident: ref2 doi: 10.1055/s-0035-1544171 – ident: ref10 doi: 10.1186/1743-0003-9-85 – year: 0 ident: ref9 article-title: I-limb prosthesis – volume: 53 start-page: 2232 year: 2006 ident: ref14 article-title: A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.883695 – year: 0 ident: ref24 article-title: PyTorch open source machine learning framework |
SSID | ssj0056292 |
Score | 2.5358593 |
Snippet | This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 232 |
SubjectTerms | Algorithms Armband Artificial intelligence Artificial Limbs Artificial neural networks Circuit boards Co-design Control Convolution Data processing Data transmission Deep Learning Edge Computing Electrodes Electromyography Electromyography - instrumentation Equipment Design Forearm Forearm - physiology Gesture Gesture recognition Gestures Hand - physiology HD-EMG Homogeneity Humans Latency Machine Learning Motion Muscle contraction Muscle, Skeletal - physiology Muscles Muscular function Myoelectric Neural Network Neural networks Printed circuits Prostheses Prosthetic Hand Prosthetics Real time operation Real-Time Real-time systems Recognition Signal processing Signal Processing, Computer-Assisted - instrumentation |
Title | A Fully Embedded Adaptive Real-Time Hand Gesture Classifier Leveraging HD-sEMG and Deep Learning |
URI | https://ieeexplore.ieee.org/document/8911244 https://www.ncbi.nlm.nih.gov/pubmed/31765319 https://www.proquest.com/docview/2384313731 https://www.proquest.com/docview/2318733781 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuAAhfJYaJGRuIG3cezE9nHbbrtCLAdopd6C7dgVArKrdnOAX98Z5yFAgLhFyjixNZ6Zb-x5EPLKAkaIpY2s8EEyqWrDQOflzJTWGe6NsRbPIZfvy8WFfHtZXG6RN2MuTAghBZ-FKT6mu_x65Vs8KjvUIJlgjrbJNjhuXa7WoHXBjKcGyIhHsI53MSTIZObw_Oh49hGjuMw0N0VRSv6LEUpdVf4OMJOhOb1PlsMUu_iSL9N246b-x2_VG_93DbvkXo846azbIg_IVmgekrs_1SHcI59mFF3R73T-zQXQRDWd1XaNipB-ACDJME-ELmxT0zOYeXsdaOql-TmCTaXvAkhD6nVEFyfsZr48o0h5EsKa9tVbrx6Ri9P5-fGC9a0XmBcF3zAtfJ4pZbQUMkbNo3ZFroNwtc88t0plUfKaK5-rvIzBZ7ZU3tc2swJLmDnxmOw0qyY8JdRJJ7WT4MeAZ8Z9NIXTZRbBcYqhiCpOCB94Ufm-Ljm2x_haJf8kM1XiX4X8q3r-Tcjrccy6q8rxT-o95MNI2bNgQvYHlle94N5UgGAAUgklYNTL8TWIHN6j2CasWqThWgmhNNA86bbK-G2AYyWqtWd__udzcidHhz2F_uyTnc11Gw4A1Wzci7SdbwEUcu-0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOQAHCpTH0gJG4gbZxrEd28el3TbAbg-wlXpLbcdGVSG7ajcH-PWMnYdoBYhbpIwTW-OZ-caeB0JvNGAEn2ufcOtYwkSlEtB5WaJybRSxSmkdziHnx3lxwj6e8tMN9G7IhXHOxeAzNw6P8S6_WtomHJXtSZBMMEe30G2w-5y02Vq93gVDHlsgB0QSKnnzPkUmVXuL9_uTLyGOS40zxXnOyDUzFPuq_B1iRlNzuIXm_STbCJOLcbM2Y_vzRv3G_13FA3S_w5x40m6Sh2jD1Y_Qvd8qEW6jswkOzugPPP1uHOiiCk8qvQqqEH8GKJmETBFc6LrCRzDz5tLh2E3z3INVxTMH8hC7HeHiILmazo9woDxwboW7-q1fH6OTw-liv0i65guJpZysE0ltlgqhJKPMe0m8NDyTjprKppZoIVLPSEWEzUSWe2dTnQtrK51qGoqYGfoEbdbL2j1D2DDDpGHgyYBvRqxX3Mg89eA6ece98CNEel6UtqtMHhpkfCujh5KqMvKvDPwrO_6N0NthzKqty_FP6u3Ah4GyY8EI7fYsLzvRvSoBwwCoooLCqNfDaxC6cJOia7dsAg2RglIhgeZpu1WGbwMgy4Nie_7nf75Cd4rFfFbOPhx_2kF3s-C-x0CgXbS5vmzcC8A4a_Mybu1fvify_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fully+Embedded+Adaptive+Real-Time+Hand+Gesture+Classifier+Leveraging+HD-sEMG+and+Deep+Learning&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Tam%2C+Simon&rft.au=Boukadoum%2C+Mounir&rft.au=Campeau-Lecours%2C+Alexandre&rft.au=Gosselin%2C+Benoit&rft.date=2020-04-01&rft.eissn=1940-9990&rft.volume=14&rft.issue=2&rft.spage=232&rft_id=info:doi/10.1109%2FTBCAS.2019.2955641&rft_id=info%3Apmid%2F31765319&rft.externalDocID=31765319 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon |