A Fully Embedded Adaptive Real-Time Hand Gesture Classifier Leveraging HD-sEMG and Deep Learning

This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network (CNN) to classify hand-muscle contractions sensed at the forearm. The sensor consists in a custom non-intrusive, compact, and easy-to-install...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 14; no. 2; pp. 232 - 243
Main Authors Tam, Simon, Boukadoum, Mounir, Campeau-Lecours, Alexandre, Gosselin, Benoit
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a real-time fine gesture recognition system for multi-articulating hand prosthesis control, using an embedded convolutional neural network (CNN) to classify hand-muscle contractions sensed at the forearm. The sensor consists in a custom non-intrusive, compact, and easy-to-install 32-channel high-density surface electromyography (HDsEMG) electrode array, built on a flexible printed circuit board (PCB) to allow wrapping around the forearm. The sensor provides a low-noise digitization interface with wireless data transmission through an industrial, scientific and medical (ISM) radio link. An original frequency-time-space cross-domain preprocessing method is proposed to enhance gesture-specific data homogeneity and generate reliable muscle activation maps, leading to 98.15% accuracy when using a majority vote over 5 subsequent inferences by the proposed CNN. The obtained real-time gesture recognition, within 100 to 200 ms, and CNN properties show reliable and promising results to improve on the state-of-the-art of commercial hand prostheses. Moreover, edge computing using a specialized embedded artificial intelligence (AI) platform ensures reliable, secure and low latency real-time operation as well as quick and easy access to training, fine-tuning and calibration of the neural network. Co-design of the signal processing, AI algorithms and sensing hardware ensures a reliable and power-efficient embedded gesture recognition system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1932-4545
1940-9990
DOI:10.1109/TBCAS.2019.2955641