Neuroadaptive Fault-Tolerant Control of Quadrotor UAVs: A More Affordable Solution
This paper investigates the position and attitude tracking control problem of a quadrotor unmanned aerial vehicle subject to modeling uncertainties and actuator failures. A comprehensive mathematical model reflecting the nonlinearity and state-space coupling of the dynamics as well as actuation faul...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 30; no. 7; pp. 1975 - 1983 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper investigates the position and attitude tracking control problem of a quadrotor unmanned aerial vehicle subject to modeling uncertainties and actuator failures. A comprehensive mathematical model reflecting the nonlinearity and state-space coupling of the dynamics as well as actuation faults and external disturbances is derived. By combining the radial basis function neural networks (NNs) with virtual parameter estimating algorithms, an indirect NN-based adaptive fault-tolerant control scheme is developed, which exhibits several attractive features as compared with most existing methods: 1) it is not only robust and adaptive to nonparametric uncertainties but also tolerant to unexpected actuation faults; 2) it ensures stable tracking without the need for precise information on system model; and 3) it only involves one lumped parameter adaptation, thus is structurally simpler and computationally less expensive, rendering the resultant scheme less demanding in programming and more affordable for onboard implementation. The effectiveness and benefits of the proposed method are confirmed via computer simulation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2018.2876130 |