Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode
An integrated single-inductor dual-output boost converter is presented. This converter adopts time-multiplexing control in providing two independent supply voltages (3.0 and 3.6 V) using only one 1-/spl mu/H off-chip inductor and a single control loop. This converter is analyzed and compared with ex...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 38; no. 1; pp. 89 - 100 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An integrated single-inductor dual-output boost converter is presented. This converter adopts time-multiplexing control in providing two independent supply voltages (3.0 and 3.6 V) using only one 1-/spl mu/H off-chip inductor and a single control loop. This converter is analyzed and compared with existing counterparts in the aspects of integration, architecture, control scheme, and system stability. Implementation of the power stage, the controller, and the peripheral functional blocks is discussed. The design was fabricated with a standard 0.5-/spl mu/m CMOS n-well process. At an oscillator frequency of 1 MHz, the power conversion efficiency reaches 88.4% at a total output power of 350 mW. This topology can be extended to have multiple outputs and can be applied to buck, flyback, and other kinds of converters. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2002.806279 |