Data-Driven Performance-Prescribed Reinforcement Learning Control of an Unmanned Surface Vehicle
An unmanned surface vehicle (USV) under complicated marine environments can hardly be modeled well such that model-based optimal control approaches become infeasible. In this article, a self-learning-based model-free solution only using input-output signals of the USV is innovatively provided. To th...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 32; no. 12; pp. 5456 - 5467 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2021.3056444 |
Cover
Loading…
Summary: | An unmanned surface vehicle (USV) under complicated marine environments can hardly be modeled well such that model-based optimal control approaches become infeasible. In this article, a self-learning-based model-free solution only using input-output signals of the USV is innovatively provided. To this end, a data-driven performance-prescribed reinforcement learning control (DPRLC) scheme is created to pursue control optimality and prescribed tracking accuracy simultaneously. By devising state transformation with prescribed performance, constrained tracking errors are substantially converted into constraint-free stabilization of tracking errors with unknown dynamics. Reinforcement learning paradigm using neural network-based actor-critic learning framework is further deployed to directly optimize controller synthesis deduced from the Bellman error formulation such that transformed tracking errors evolve a data-driven optimal controller. Theoretical analysis eventually ensures that the entire DPRLC scheme can guarantee prescribed tracking accuracy, subject to optimal cost. Both simulations and virtual-reality experiments demonstrate the remarkable effectiveness and superiority of the proposed DPRLC scheme. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2021.3056444 |