Differential profiles of copper-induced ROS generation in human neuroblastoma and astrocytoma cells

To determine neuronal and glial responses to copper (Cu) elevation in the CNS, human neuroblastoma and astrocytoma cells were used to compare their responses to Cu in terms of reactive oxygen species (ROS) generation and expression of enzymes responsible for anti-oxidation. Astrocytoma cells, not ne...

Full description

Saved in:
Bibliographic Details
Published inBrain research. Molecular brain research. Vol. 134; no. 2; pp. 323 - 332
Main Authors Qian, Yongchang, Zheng, Ying, Abraham, Liz, Ramos, Kenneth S., Tiffany-Castiglioni, Evelyn
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 04.04.2005
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To determine neuronal and glial responses to copper (Cu) elevation in the CNS, human neuroblastoma and astrocytoma cells were used to compare their responses to Cu in terms of reactive oxygen species (ROS) generation and expression of enzymes responsible for anti-oxidation. Astrocytoma cells, not neuroblastoma cells, were responsive to Cu and Cu elevation was associated with ROS generation. Intracellular Cu levels as determined by inductively coupled plasma-mass spectrometry (ICP-MS), and expression levels of copper-transporting ATPase (ATP7A) and human copper transporter 1 (hCtr1) as detected by quantitative reverse transcription–polymerase chain reaction (RT-PCR), were comparable in both cell lines. Differences in Cu-induced ROS between two cell lines paralleled superoxide dismutase (SOD)-catalase expression as detected by Western blot analysis. Copper,zinc-SOD (Cu,Zn-SOD) and catalase protein levels were upregulated by Cu in neuroblastoma cells while Cu,Zn-SOD was down-regulated by Cu and catalase level was not changed in astrocytoma cells. Manganese-SOD (Mn-SOD) was not responsive to Cu in either cell line. Furthermore, 78-kDa glucose-regulated protein aggregation and upregulation were observed in Cu-treated astrocytoma cells, but not neuroblastoma cells. These data suggest that neurons use the SOD-catalase system to scavenge Cu-induced ROS while glia rely on the endoplasmic reticulum stress response to compensate for the reduction of ROS scavenging capacity.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0169-328X
1872-6941
DOI:10.1016/j.molbrainres.2004.11.004