Transient flow of magnetized Maxwell nanofluid: Buongiorno model perspective of Cattaneo-Christov theory

The present research article is devoted to studying the characteristics of Cattaneo-Christov heat and mass fluxes in the Maxwell nanofluid flow caused by a stretching sheet with the magnetic field properties. The Maxwell nanofluid is investigated with the impact of the Lorentz force to examine the c...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and mechanics Vol. 41; no. 4; pp. 655 - 666
Main Authors Khan, M., Ahmed, A., Ahmed, J.
Format Journal Article
LanguageEnglish
Published Shanghai Shanghai University 01.04.2020
Springer Nature B.V
Department of Mathematics, Quaid-i-Azam University, Islamabad 44000, Pakistan%Department of Mathematics, Quaid-i-Azam University, Islamabad 44000, Pakistan
Department of Basic Sciences, University of Engineering and Technology,Taxila 47050, Pakistan
EditionEnglish ed.
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present research article is devoted to studying the characteristics of Cattaneo-Christov heat and mass fluxes in the Maxwell nanofluid flow caused by a stretching sheet with the magnetic field properties. The Maxwell nanofluid is investigated with the impact of the Lorentz force to examine the consequence of a magnetic field on the flow characteristics and the transport of energy. The heat and mass transport mechanisms in the current physical model are analyzed with the modified versions of Fourier’s and Fick’s laws, respectively. Additionally, the well-known Buongiorno model for the nanofluids is first introduced together with the Cattaneo-Christov heat and mass fluxes during the transient motion of the Maxwell fluid. The governing partial differential equations (PDEs) for the flow and energy transport phenomena are obtained by using the Maxwell model and the Cattaneo-Christov theory in addition to the laws of conservation. Appropriate transformations are used to convert the PDEs into a system of nonlinear ordinary differential equations (ODEs). The homotopic solution methodology is applied to the nonlinear differential system for an analytic solution. The results for the time relaxation parameter in the flow, thermal energy, and mass transport equations are discussed graphically. It is noted that higher values of the thermal and solutal relaxation time parameters in the Cattaneo-Christov heat and mass fluxes decline the thermal and concentration fields of the nanofluid. Further, larger values of the thermophoretic force enhance the heat and mass transport in the nanoliquid. Moreover, the Brownian motion of the nanoparticles declines the concentration field and increases the temperature field. The validation of the results is assured with the help of numerical tabular data for the surface velocity gradient.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0253-4827
1573-2754
DOI:10.1007/s10483-020-2593-9