Computing Time-Varying Quadratic Optimization With Finite-Time Convergence and Noise Tolerance: A Unified Framework for Zeroing Neural Network

Zeroing neural network (ZNN), as a powerful calculating tool, is extensively applied in various computation and optimization fields. Convergence and noise-tolerance performance are always pursued and investigated in the ZNN field. Up to now, there are no unified ZNN models that simultaneously achiev...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 30; no. 11; pp. 3360 - 3369
Main Authors Xiao, Lin, Li, Kenli, Duan, Mingxing
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zeroing neural network (ZNN), as a powerful calculating tool, is extensively applied in various computation and optimization fields. Convergence and noise-tolerance performance are always pursued and investigated in the ZNN field. Up to now, there are no unified ZNN models that simultaneously achieve the finite-time convergence and inherent noise tolerance for computing time-varying quadratic optimization problems, although this superior property is highly demanded in practical applications. In this paper, for computing time-varying quadratic optimization within finite-time convergence in the presence of various additive noises, a new framework for ZNN is designed to fill this gap in a unified manner. Specifically, different from the previous design formulas either possessing finite-time convergence or possessing noise-tolerance performance, a new design formula with finite-time convergence and noise tolerance is proposed in a unified framework (and thus called unified design formula). Then, on the basis of the unified design formula, a unified ZNN (UZNN) is, thus, proposed and investigated in the unified framework of ZNN for computing time-varying quadratic optimization problems in the presence of various additive noises. In addition, theoretical analyses of the unified design formula and the UZNN model are given to guarantee the finite-time convergence and inherent noise tolerance. Computer simulation results verify the superior property of the UZNN model for computing time-varying quadratic optimization problems, as compared with the previously proposed ZNN models.
AbstractList Zeroing neural network (ZNN), as a powerful calculating tool, is extensively applied in various computation and optimization fields. Convergence and noise-tolerance performance are always pursued and investigated in the ZNN field. Up to now, there are no unified ZNN models that simultaneously achieve the finite-time convergence and inherent noise tolerance for computing time-varying quadratic optimization problems, although this superior property is highly demanded in practical applications. In this paper, for computing time-varying quadratic optimization within finite-time convergence in the presence of various additive noises, a new framework for ZNN is designed to fill this gap in a unified manner. Specifically, different from the previous design formulas either possessing finite-time convergence or possessing noise-tolerance performance, a new design formula with finite-time convergence and noise tolerance is proposed in a unified framework (and thus called unified design formula). Then, on the basis of the unified design formula, a unified ZNN (UZNN) is, thus, proposed and investigated in the unified framework of ZNN for computing time-varying quadratic optimization problems in the presence of various additive noises. In addition, theoretical analyses of the unified design formula and the UZNN model are given to guarantee the finite-time convergence and inherent noise tolerance. Computer simulation results verify the superior property of the UZNN model for computing time-varying quadratic optimization problems, as compared with the previously proposed ZNN models.Zeroing neural network (ZNN), as a powerful calculating tool, is extensively applied in various computation and optimization fields. Convergence and noise-tolerance performance are always pursued and investigated in the ZNN field. Up to now, there are no unified ZNN models that simultaneously achieve the finite-time convergence and inherent noise tolerance for computing time-varying quadratic optimization problems, although this superior property is highly demanded in practical applications. In this paper, for computing time-varying quadratic optimization within finite-time convergence in the presence of various additive noises, a new framework for ZNN is designed to fill this gap in a unified manner. Specifically, different from the previous design formulas either possessing finite-time convergence or possessing noise-tolerance performance, a new design formula with finite-time convergence and noise tolerance is proposed in a unified framework (and thus called unified design formula). Then, on the basis of the unified design formula, a unified ZNN (UZNN) is, thus, proposed and investigated in the unified framework of ZNN for computing time-varying quadratic optimization problems in the presence of various additive noises. In addition, theoretical analyses of the unified design formula and the UZNN model are given to guarantee the finite-time convergence and inherent noise tolerance. Computer simulation results verify the superior property of the UZNN model for computing time-varying quadratic optimization problems, as compared with the previously proposed ZNN models.
Zeroing neural network (ZNN), as a powerful calculating tool, is extensively applied in various computation and optimization fields. Convergence and noise-tolerance performance are always pursued and investigated in the ZNN field. Up to now, there are no unified ZNN models that simultaneously achieve the finite-time convergence and inherent noise tolerance for computing time-varying quadratic optimization problems, although this superior property is highly demanded in practical applications. In this paper, for computing time-varying quadratic optimization within finite-time convergence in the presence of various additive noises, a new framework for ZNN is designed to fill this gap in a unified manner. Specifically, different from the previous design formulas either possessing finite-time convergence or possessing noise-tolerance performance, a new design formula with finite-time convergence and noise tolerance is proposed in a unified framework (and thus called unified design formula). Then, on the basis of the unified design formula, a unified ZNN (UZNN) is, thus, proposed and investigated in the unified framework of ZNN for computing time-varying quadratic optimization problems in the presence of various additive noises. In addition, theoretical analyses of the unified design formula and the UZNN model are given to guarantee the finite-time convergence and inherent noise tolerance. Computer simulation results verify the superior property of the UZNN model for computing time-varying quadratic optimization problems, as compared with the previously proposed ZNN models.
Author Xiao, Lin
Li, Kenli
Duan, Mingxing
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0003-3172-3490
  surname: Xiao
  fullname: Xiao, Lin
  email: xiaolin860728@163.com
  organization: College of Information Science and Engineering, Hunan University, Changsha, China
– sequence: 2
  givenname: Kenli
  orcidid: 0000-0002-2635-7716
  surname: Li
  fullname: Li, Kenli
  email: lkl@hnu.edu.cn
  organization: College of Information Science and Engineering, Hunan University, Changsha, China
– sequence: 3
  givenname: Mingxing
  orcidid: 0000-0002-1049-6244
  surname: Duan
  fullname: Duan, Mingxing
  email: duanmingxing16@nudt.edu.cn
  organization: College of Information Science and Engineering, Hunan University, Changsha, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30716052$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1UREvpC4CELLFhk8GXxHbYVSMGkEZTIaaA2ESe-KS4JPbUdlrBQ_DMOJ1hFl3gzbn4-32s8z9FR847QOg5JTNKSf1mvVotP88YofWMqZqyij1CJ4wKVjCu1NEhl9-O0VmM1yQfQSpR1k_QMSeS5oKdoD9zP2zHZN0VXtsBii86_JqKT6M2QSfb4ottsoP9nXPv8FebfuCFdTZBMfF47t0thCtwLWDtDF55GwGvfQ9B595bfI4vne0sGLwIeoA7H37izgf8HYKfBq1gDLrPIU1Xz9DjTvcRzvbxFF0u3q3nH4rlxfuP8_Nl0fKKpkJQISRhfCO56ahhhlUGADrJNpROrY6QlpSqll3ZKgFAtS6JkbWQghlF-Cl6vXt3G_zNCDE1g40t9L124MfYMCrrijMmVEZfPUCv_Rhc_l3DOM1eyEqWmXq5p8bNAKbZBjvkVTb_Np0BtgPa4GMM0B0QSprJ0ebe0WZytNk7mkXqgai16d6JFLTt_y99sZPavJjDLCU4qVXJ_wI7i65n
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3185133
crossref_primary_10_1016_j_asoc_2020_106735
crossref_primary_10_1109_TNNLS_2021_3084740
crossref_primary_10_1109_TNNLS_2020_2963998
crossref_primary_10_1142_S0218127422502108
crossref_primary_10_1016_j_neucom_2022_01_018
crossref_primary_10_1109_TII_2020_3047959
crossref_primary_10_1109_TNNLS_2020_3028304
crossref_primary_10_1016_j_eswa_2023_121559
crossref_primary_10_1016_j_neucom_2021_01_096
crossref_primary_10_1007_s11063_022_10900_y
crossref_primary_10_1109_TSMC_2019_2944152
crossref_primary_10_1109_TNNLS_2020_2986275
crossref_primary_10_1016_j_ins_2024_121217
crossref_primary_10_1109_TNNLS_2019_2934734
crossref_primary_10_1002_rnc_4911
crossref_primary_10_1109_TII_2019_2941750
crossref_primary_10_1109_TCSII_2023_3287182
crossref_primary_10_1016_j_knosys_2022_108405
crossref_primary_10_1109_TNNLS_2024_3371543
crossref_primary_10_3390_biomimetics9080453
crossref_primary_10_1016_j_neucom_2022_03_010
crossref_primary_10_1109_TII_2023_3329640
crossref_primary_10_1109_ACCESS_2025_3539374
crossref_primary_10_1109_ACCESS_2019_2938016
crossref_primary_10_1109_TFUZZ_2024_3464564
crossref_primary_10_1007_s11075_020_01061_x
crossref_primary_10_1016_j_neucom_2019_03_053
crossref_primary_10_1109_TNNLS_2020_2966294
crossref_primary_10_1016_j_asoc_2019_105880
crossref_primary_10_1109_TSMC_2019_2930646
crossref_primary_10_1016_j_neucom_2023_02_033
crossref_primary_10_1016_j_neunet_2023_12_011
crossref_primary_10_1109_TII_2020_2996215
crossref_primary_10_1109_TNNLS_2019_2944992
crossref_primary_10_1109_TNNLS_2022_3193429
crossref_primary_10_1016_j_ins_2021_06_038
crossref_primary_10_1007_s00521_024_10922_8
crossref_primary_10_3389_fnbot_2023_1190977
crossref_primary_10_1007_s11063_024_11482_7
crossref_primary_10_1109_TII_2024_3476530
crossref_primary_10_1016_j_jmaa_2024_129095
crossref_primary_10_1016_j_tcs_2023_114328
crossref_primary_10_1007_s00521_022_07757_6
crossref_primary_10_1016_j_neucom_2022_08_066
crossref_primary_10_1016_j_neucom_2020_10_035
crossref_primary_10_1109_TNNLS_2021_3106640
crossref_primary_10_1007_s11063_021_10726_0
crossref_primary_10_1109_ACCESS_2020_2971020
crossref_primary_10_1016_j_neucom_2025_129778
crossref_primary_10_1109_ACCESS_2024_3382189
crossref_primary_10_1109_TNNLS_2020_2980038
crossref_primary_10_1109_ACCESS_2019_2940545
crossref_primary_10_1109_ACCESS_2024_3461756
crossref_primary_10_1109_TETCI_2024_3377678
crossref_primary_10_1016_j_neucom_2022_03_036
crossref_primary_10_1109_TNNLS_2021_3082950
crossref_primary_10_1016_j_neucom_2021_06_089
crossref_primary_10_3934_math_2022129
crossref_primary_10_1016_j_neucom_2019_08_085
crossref_primary_10_1109_ACCESS_2023_3290046
crossref_primary_10_1007_s11063_021_10462_5
crossref_primary_10_1109_ACCESS_2024_3457539
crossref_primary_10_1016_j_neucom_2022_09_043
crossref_primary_10_1016_j_neucom_2020_11_012
crossref_primary_10_1109_TNNLS_2019_2938866
Cites_doi 10.1016/j.asoc.2014.06.045
10.1109/TCSII.2003.814805
10.1109/TCYB.2013.2253461
10.1007/s00521-011-0692-5
10.1016/j.neunet.2018.05.008
10.1016/j.automatica.2018.11.001
10.1109/TNNLS.2016.2574363
10.1109/TNNLS.2015.2425301
10.1023/A:1023073621589
10.1109/TSMC.2018.2870489
10.1109/TNNLS.2015.2469147
10.1109/TSMCB.2003.811519
10.1016/j.physleta.2009.03.011
10.1007/s11063-012-9241-1
10.1088/1751-8113/43/24/245202
10.1007/BF02591962
10.1016/j.ipl.2018.10.004
10.1109/TNNLS.2015.2497715
10.1109/TSMC.2018.2836968
10.1016/S0375-9601(02)00424-3
10.1109/TNN.2006.881046
10.1088/0957-0233/17/8/007
10.1109/TII.2017.2717020
10.1109/TNN.2007.910736
10.1109/TII.2018.2867169
10.1016/j.ipl.2011.05.010
10.1016/j.mechatronics.2008.04.005
10.1109/TAES.2014.120731
10.1016/j.neucom.2014.09.047
10.1016/j.neunet.2012.12.009
10.1016/j.asoc.2015.11.023
10.1109/TCNS.2015.2401172
10.1016/j.neucom.2018.11.071
10.2298/CSIS120121043Z
10.1109/TNN.2005.857946
10.1016/j.neucom.2011.02.007
10.1016/j.neucom.2017.06.030
10.1109/TNN.2002.1031938
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2019.2891252
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 3369
ExternalDocumentID 30716052
10_1109_TNNLS_2019_2891252
8630984
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Research Foundation of Education Bureau of Hunan Province of China
  grantid: 15B192
– fundername: Natural Science Foundation of Hunan Province
  grantid: 2016JJ2101; 2017JJ3258; 2018TP1018; 2018RS3065
  funderid: 10.13039/501100004735
– fundername: National Natural Science Foundation of China
  grantid: 61866013; 61503152
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61563017; 61662025; 61473259
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-61667023b73df1d2d25deeef72b113df1f00c04897f4c86ee1aa40d796762d803
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 08:03:40 EDT 2025
Sun Jun 29 14:04:08 EDT 2025
Thu Jan 02 22:59:09 EST 2025
Thu Apr 24 23:04:30 EDT 2025
Tue Jul 01 00:27:29 EDT 2025
Wed Aug 27 02:40:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-61667023b73df1d2d25deeef72b113df1f00c04897f4c86ee1aa40d796762d803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3172-3490
0000-0002-2635-7716
0000-0002-1049-6244
PMID 30716052
PQID 2311107574
PQPubID 85436
PageCount 10
ParticipantIDs pubmed_primary_30716052
ieee_primary_8630984
proquest_miscellaneous_2179532268
crossref_primary_10_1109_TNNLS_2019_2891252
proquest_journals_2311107574
crossref_citationtrail_10_1109_TNNLS_2019_2891252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
dyn (ref9) 1983; 41
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
References_xml – ident: ref33
  doi: 10.1016/j.asoc.2014.06.045
– ident: ref17
  doi: 10.1109/TCSII.2003.814805
– ident: ref3
  doi: 10.1109/TCYB.2013.2253461
– ident: ref30
  doi: 10.1007/s00521-011-0692-5
– ident: ref36
  doi: 10.1016/j.neunet.2018.05.008
– ident: ref6
  doi: 10.1016/j.automatica.2018.11.001
– ident: ref5
  doi: 10.1109/TNNLS.2016.2574363
– ident: ref13
  doi: 10.1109/TNNLS.2015.2425301
– ident: ref8
  doi: 10.1023/A:1023073621589
– ident: ref38
  doi: 10.1109/TSMC.2018.2870489
– ident: ref4
  doi: 10.1109/TNNLS.2015.2469147
– ident: ref18
  doi: 10.1109/TSMCB.2003.811519
– ident: ref28
  doi: 10.1016/j.physleta.2009.03.011
– ident: ref32
  doi: 10.1007/s11063-012-9241-1
– ident: ref23
  doi: 10.1088/1751-8113/43/24/245202
– volume: 41
  start-page: 165
  year: 1983
  ident: ref9
  article-title: The numerical solution of equality-constrained quadratic programming problems
  publication-title: Math Comput
– ident: ref7
  doi: 10.1007/BF02591962
– ident: ref25
  doi: 10.1016/j.ipl.2018.10.004
– ident: ref37
  doi: 10.1109/TNNLS.2015.2497715
– ident: ref24
  doi: 10.1109/TSMC.2018.2836968
– ident: ref10
  doi: 10.1016/S0375-9601(02)00424-3
– ident: ref11
  doi: 10.1109/TNN.2006.881046
– ident: ref19
  doi: 10.1088/0957-0233/17/8/007
– ident: ref29
  doi: 10.1109/TII.2017.2717020
– ident: ref12
  doi: 10.1109/TNN.2007.910736
– ident: ref16
  doi: 10.1109/TII.2018.2867169
– ident: ref22
  doi: 10.1016/j.ipl.2011.05.010
– ident: ref15
  doi: 10.1016/j.mechatronics.2008.04.005
– ident: ref2
  doi: 10.1109/TAES.2014.120731
– ident: ref34
  doi: 10.1016/j.neucom.2014.09.047
– ident: ref14
  doi: 10.1016/j.neunet.2012.12.009
– ident: ref35
  doi: 10.1016/j.asoc.2015.11.023
– ident: ref1
  doi: 10.1109/TCNS.2015.2401172
– ident: ref21
  doi: 10.1016/j.neucom.2018.11.071
– ident: ref31
  doi: 10.2298/CSIS120121043Z
– ident: ref27
  doi: 10.1109/TNN.2005.857946
– ident: ref20
  doi: 10.1016/j.neucom.2011.02.007
– ident: ref39
  doi: 10.1016/j.neucom.2017.06.030
– ident: ref26
  doi: 10.1109/TNN.2002.1031938
SSID ssj0000605649
Score 2.5480726
Snippet Zeroing neural network (ZNN), as a powerful calculating tool, is extensively applied in various computation and optimization fields. Convergence and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3360
SubjectTerms Additive noise
Computational efficiency
Computational modeling
Computer simulation
Computing time
Convergence
Design
Design formula
Economic models
finite-time convergence
Neural networks
Noise
Noise tolerance
Optimization
quadratic optimization
Quadratic programming
Recurrent neural networks
zeroing neural network (ZNN)
Title Computing Time-Varying Quadratic Optimization With Finite-Time Convergence and Noise Tolerance: A Unified Framework for Zeroing Neural Network
URI https://ieeexplore.ieee.org/document/8630984
https://www.ncbi.nlm.nih.gov/pubmed/30716052
https://www.proquest.com/docview/2311107574
https://www.proquest.com/docview/2179532268
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrhQoDwWCjISN_A2zsNOuFUVqwpBEGILKy6RY4_VFSVB2-TCj-A3M-M8JBAgbpEfsa0Zj7-x58HYs9Raraz3wkhrRZrGTpg8BaGBchWCy7QLBrKlOr9IX2-yzR57MfvCAEAwPoMlfYa3fNfanq7KTnKVREWe7rN9VNwGX635PiVCXK4C2o2likWc6M3kIxMVJ-uyfPOBDLmKJWoYeKhTFhtkb4m94l-OpJBj5e9wMxw7q0P2dprwYG3yZdl39dJ-_y2W4_-u6Ba7OeJPfjowzG22B80ddjjlduDjVj9iP4YiPNg4eYmIj2ZHDlH8fW8cMY3l71DYfB29OPmnbXfJV1sCsILa8zOyZg-OncBN43jZbq-Br9sroEwe8JKfcoS7HgEwX032YRwBNP8Mu5YGoqghONFyMFO_yy5Wr9Zn52LM3SBskskONVKlNOKBWifOSxe7OHO4eq_jWkoq8lFkUXoU2qc2VwDSmDRyulAonV0eJffYQdM28IDxOtFeUZh2MBRcMKu9UyrzvihqRJu1XDA5ka-yY2Bzyq9xVQUFJyqqQP2KqF-N1F-w53Ofb0NYj3-2PiLSzS1Hqi3Y8cQl1bjzryvEy6RSZxqrn87VuGfpIcY00PbYBqVghpJU5Qt2f-Cu-d8TUz7885iP2A2a2eANecwOul0PjxEWdfWTsB9-AoQxB6A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELZKOcCFAuWxUMBIcELZxk5iJ0gcqsJqS5cgxBZWvYTED3XVkqDdRAh-BL-Av8J_Y8Z5SCDgVolblDhO5Hwz840zD0IehUpJoaz1cqaUF4Zce3kcGk8a7FVodCS1C5BNxfQofLmIFhvk-5ALY4xxwWdmjIfuX76uVINbZbuxCPwkDrsQykPz5TM4aOtnB8_haz7mfPJivj_1uh4CngoiVoNnJIQEu1TIQFumueaRhnmt5AVjeMr6vgIUJ9KGKhbGsDwPfS0TAVpCx34A814gF4FnRLzNDht2cHzwBITj15wJ7vFALvqsHD_Znafp7C2GjiVj8GmARmDfHBAoBnfxX4yg6-ryd4LrDN1ki_zol6iNbzkdN3UxVl9_qx75v67hVXKlY9h0rxWJa2TDlNfJVt-9gnbKbJt8a0-B6aaYB-O9y1eY8kXfNLlGsVD0NajTj12eKn2_rE_oZIkU3cPxdB_j9V3qqqF5qWlaLdeGzqszg71KzFO6R4HQW6D4dNJHwFFwEeixWVX4IKyLAi-atoH4N8jRuazKTbJZVqW5TWgRSCuwEL3JsXxiVFgtRGRtkhTApws2IqyHS6a60u3YQeQscy6cn2QObRmiLevQNiJPhns-tYVL_jl6G6EyjOxQMiI7PSqzTretM_AIcNMgknD54XAZtBL-aspLUzUwBvR8BLZCxCNyq0XzMHcvBHf-_MwH5NJ0_mqWzQ7Sw7vkMr5lm_u5QzbrVWPuAQmsi_tOFin5cN7A_QmFDmQm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+Time-Varying+Quadratic+Optimization+With+Finite-Time+Convergence+and+Noise+Tolerance%3A+A+Unified+Framework+for+Zeroing+Neural+Network&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xiao%2C+Lin&rft.au=Li%2C+Kenli&rft.au=Duan%2C+Mingxing&rft.date=2019-11-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=30&rft.issue=11&rft.spage=3360&rft.epage=3369&rft_id=info:doi/10.1109%2FTNNLS.2019.2891252&rft_id=info%3Apmid%2F30716052&rft.externalDocID=8630984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon