Computing Time-Varying Quadratic Optimization With Finite-Time Convergence and Noise Tolerance: A Unified Framework for Zeroing Neural Network
Zeroing neural network (ZNN), as a powerful calculating tool, is extensively applied in various computation and optimization fields. Convergence and noise-tolerance performance are always pursued and investigated in the ZNN field. Up to now, there are no unified ZNN models that simultaneously achiev...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 30; no. 11; pp. 3360 - 3369 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zeroing neural network (ZNN), as a powerful calculating tool, is extensively applied in various computation and optimization fields. Convergence and noise-tolerance performance are always pursued and investigated in the ZNN field. Up to now, there are no unified ZNN models that simultaneously achieve the finite-time convergence and inherent noise tolerance for computing time-varying quadratic optimization problems, although this superior property is highly demanded in practical applications. In this paper, for computing time-varying quadratic optimization within finite-time convergence in the presence of various additive noises, a new framework for ZNN is designed to fill this gap in a unified manner. Specifically, different from the previous design formulas either possessing finite-time convergence or possessing noise-tolerance performance, a new design formula with finite-time convergence and noise tolerance is proposed in a unified framework (and thus called unified design formula). Then, on the basis of the unified design formula, a unified ZNN (UZNN) is, thus, proposed and investigated in the unified framework of ZNN for computing time-varying quadratic optimization problems in the presence of various additive noises. In addition, theoretical analyses of the unified design formula and the UZNN model are given to guarantee the finite-time convergence and inherent noise tolerance. Computer simulation results verify the superior property of the UZNN model for computing time-varying quadratic optimization problems, as compared with the previously proposed ZNN models. |
---|---|
AbstractList | Zeroing neural network (ZNN), as a powerful calculating tool, is extensively applied in various computation and optimization fields. Convergence and noise-tolerance performance are always pursued and investigated in the ZNN field. Up to now, there are no unified ZNN models that simultaneously achieve the finite-time convergence and inherent noise tolerance for computing time-varying quadratic optimization problems, although this superior property is highly demanded in practical applications. In this paper, for computing time-varying quadratic optimization within finite-time convergence in the presence of various additive noises, a new framework for ZNN is designed to fill this gap in a unified manner. Specifically, different from the previous design formulas either possessing finite-time convergence or possessing noise-tolerance performance, a new design formula with finite-time convergence and noise tolerance is proposed in a unified framework (and thus called unified design formula). Then, on the basis of the unified design formula, a unified ZNN (UZNN) is, thus, proposed and investigated in the unified framework of ZNN for computing time-varying quadratic optimization problems in the presence of various additive noises. In addition, theoretical analyses of the unified design formula and the UZNN model are given to guarantee the finite-time convergence and inherent noise tolerance. Computer simulation results verify the superior property of the UZNN model for computing time-varying quadratic optimization problems, as compared with the previously proposed ZNN models.Zeroing neural network (ZNN), as a powerful calculating tool, is extensively applied in various computation and optimization fields. Convergence and noise-tolerance performance are always pursued and investigated in the ZNN field. Up to now, there are no unified ZNN models that simultaneously achieve the finite-time convergence and inherent noise tolerance for computing time-varying quadratic optimization problems, although this superior property is highly demanded in practical applications. In this paper, for computing time-varying quadratic optimization within finite-time convergence in the presence of various additive noises, a new framework for ZNN is designed to fill this gap in a unified manner. Specifically, different from the previous design formulas either possessing finite-time convergence or possessing noise-tolerance performance, a new design formula with finite-time convergence and noise tolerance is proposed in a unified framework (and thus called unified design formula). Then, on the basis of the unified design formula, a unified ZNN (UZNN) is, thus, proposed and investigated in the unified framework of ZNN for computing time-varying quadratic optimization problems in the presence of various additive noises. In addition, theoretical analyses of the unified design formula and the UZNN model are given to guarantee the finite-time convergence and inherent noise tolerance. Computer simulation results verify the superior property of the UZNN model for computing time-varying quadratic optimization problems, as compared with the previously proposed ZNN models. Zeroing neural network (ZNN), as a powerful calculating tool, is extensively applied in various computation and optimization fields. Convergence and noise-tolerance performance are always pursued and investigated in the ZNN field. Up to now, there are no unified ZNN models that simultaneously achieve the finite-time convergence and inherent noise tolerance for computing time-varying quadratic optimization problems, although this superior property is highly demanded in practical applications. In this paper, for computing time-varying quadratic optimization within finite-time convergence in the presence of various additive noises, a new framework for ZNN is designed to fill this gap in a unified manner. Specifically, different from the previous design formulas either possessing finite-time convergence or possessing noise-tolerance performance, a new design formula with finite-time convergence and noise tolerance is proposed in a unified framework (and thus called unified design formula). Then, on the basis of the unified design formula, a unified ZNN (UZNN) is, thus, proposed and investigated in the unified framework of ZNN for computing time-varying quadratic optimization problems in the presence of various additive noises. In addition, theoretical analyses of the unified design formula and the UZNN model are given to guarantee the finite-time convergence and inherent noise tolerance. Computer simulation results verify the superior property of the UZNN model for computing time-varying quadratic optimization problems, as compared with the previously proposed ZNN models. |
Author | Xiao, Lin Li, Kenli Duan, Mingxing |
Author_xml | – sequence: 1 givenname: Lin orcidid: 0000-0003-3172-3490 surname: Xiao fullname: Xiao, Lin email: xiaolin860728@163.com organization: College of Information Science and Engineering, Hunan University, Changsha, China – sequence: 2 givenname: Kenli orcidid: 0000-0002-2635-7716 surname: Li fullname: Li, Kenli email: lkl@hnu.edu.cn organization: College of Information Science and Engineering, Hunan University, Changsha, China – sequence: 3 givenname: Mingxing orcidid: 0000-0002-1049-6244 surname: Duan fullname: Duan, Mingxing email: duanmingxing16@nudt.edu.cn organization: College of Information Science and Engineering, Hunan University, Changsha, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30716052$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1DAUhi1UREvpC4CELLFhk8GXxHbYVSMGkEZTIaaA2ESe-KS4JPbUdlrBQ_DMOJ1hFl3gzbn4-32s8z9FR847QOg5JTNKSf1mvVotP88YofWMqZqyij1CJ4wKVjCu1NEhl9-O0VmM1yQfQSpR1k_QMSeS5oKdoD9zP2zHZN0VXtsBii86_JqKT6M2QSfb4ottsoP9nXPv8FebfuCFdTZBMfF47t0thCtwLWDtDF55GwGvfQ9B595bfI4vne0sGLwIeoA7H37izgf8HYKfBq1gDLrPIU1Xz9DjTvcRzvbxFF0u3q3nH4rlxfuP8_Nl0fKKpkJQISRhfCO56ahhhlUGADrJNpROrY6QlpSqll3ZKgFAtS6JkbWQghlF-Cl6vXt3G_zNCDE1g40t9L124MfYMCrrijMmVEZfPUCv_Rhc_l3DOM1eyEqWmXq5p8bNAKbZBjvkVTb_Np0BtgPa4GMM0B0QSprJ0ebe0WZytNk7mkXqgai16d6JFLTt_y99sZPavJjDLCU4qVXJ_wI7i65n |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3185133 crossref_primary_10_1016_j_asoc_2020_106735 crossref_primary_10_1109_TNNLS_2021_3084740 crossref_primary_10_1109_TNNLS_2020_2963998 crossref_primary_10_1142_S0218127422502108 crossref_primary_10_1016_j_neucom_2022_01_018 crossref_primary_10_1109_TII_2020_3047959 crossref_primary_10_1109_TNNLS_2020_3028304 crossref_primary_10_1016_j_eswa_2023_121559 crossref_primary_10_1016_j_neucom_2021_01_096 crossref_primary_10_1007_s11063_022_10900_y crossref_primary_10_1109_TSMC_2019_2944152 crossref_primary_10_1109_TNNLS_2020_2986275 crossref_primary_10_1016_j_ins_2024_121217 crossref_primary_10_1109_TNNLS_2019_2934734 crossref_primary_10_1002_rnc_4911 crossref_primary_10_1109_TII_2019_2941750 crossref_primary_10_1109_TCSII_2023_3287182 crossref_primary_10_1016_j_knosys_2022_108405 crossref_primary_10_1109_TNNLS_2024_3371543 crossref_primary_10_3390_biomimetics9080453 crossref_primary_10_1016_j_neucom_2022_03_010 crossref_primary_10_1109_TII_2023_3329640 crossref_primary_10_1109_ACCESS_2025_3539374 crossref_primary_10_1109_ACCESS_2019_2938016 crossref_primary_10_1109_TFUZZ_2024_3464564 crossref_primary_10_1007_s11075_020_01061_x crossref_primary_10_1016_j_neucom_2019_03_053 crossref_primary_10_1109_TNNLS_2020_2966294 crossref_primary_10_1016_j_asoc_2019_105880 crossref_primary_10_1109_TSMC_2019_2930646 crossref_primary_10_1016_j_neucom_2023_02_033 crossref_primary_10_1016_j_neunet_2023_12_011 crossref_primary_10_1109_TII_2020_2996215 crossref_primary_10_1109_TNNLS_2019_2944992 crossref_primary_10_1109_TNNLS_2022_3193429 crossref_primary_10_1016_j_ins_2021_06_038 crossref_primary_10_1007_s00521_024_10922_8 crossref_primary_10_3389_fnbot_2023_1190977 crossref_primary_10_1007_s11063_024_11482_7 crossref_primary_10_1109_TII_2024_3476530 crossref_primary_10_1016_j_jmaa_2024_129095 crossref_primary_10_1016_j_tcs_2023_114328 crossref_primary_10_1007_s00521_022_07757_6 crossref_primary_10_1016_j_neucom_2022_08_066 crossref_primary_10_1016_j_neucom_2020_10_035 crossref_primary_10_1109_TNNLS_2021_3106640 crossref_primary_10_1007_s11063_021_10726_0 crossref_primary_10_1109_ACCESS_2020_2971020 crossref_primary_10_1016_j_neucom_2025_129778 crossref_primary_10_1109_ACCESS_2024_3382189 crossref_primary_10_1109_TNNLS_2020_2980038 crossref_primary_10_1109_ACCESS_2019_2940545 crossref_primary_10_1109_ACCESS_2024_3461756 crossref_primary_10_1109_TETCI_2024_3377678 crossref_primary_10_1016_j_neucom_2022_03_036 crossref_primary_10_1109_TNNLS_2021_3082950 crossref_primary_10_1016_j_neucom_2021_06_089 crossref_primary_10_3934_math_2022129 crossref_primary_10_1016_j_neucom_2019_08_085 crossref_primary_10_1109_ACCESS_2023_3290046 crossref_primary_10_1007_s11063_021_10462_5 crossref_primary_10_1109_ACCESS_2024_3457539 crossref_primary_10_1016_j_neucom_2022_09_043 crossref_primary_10_1016_j_neucom_2020_11_012 crossref_primary_10_1109_TNNLS_2019_2938866 |
Cites_doi | 10.1016/j.asoc.2014.06.045 10.1109/TCSII.2003.814805 10.1109/TCYB.2013.2253461 10.1007/s00521-011-0692-5 10.1016/j.neunet.2018.05.008 10.1016/j.automatica.2018.11.001 10.1109/TNNLS.2016.2574363 10.1109/TNNLS.2015.2425301 10.1023/A:1023073621589 10.1109/TSMC.2018.2870489 10.1109/TNNLS.2015.2469147 10.1109/TSMCB.2003.811519 10.1016/j.physleta.2009.03.011 10.1007/s11063-012-9241-1 10.1088/1751-8113/43/24/245202 10.1007/BF02591962 10.1016/j.ipl.2018.10.004 10.1109/TNNLS.2015.2497715 10.1109/TSMC.2018.2836968 10.1016/S0375-9601(02)00424-3 10.1109/TNN.2006.881046 10.1088/0957-0233/17/8/007 10.1109/TII.2017.2717020 10.1109/TNN.2007.910736 10.1109/TII.2018.2867169 10.1016/j.ipl.2011.05.010 10.1016/j.mechatronics.2008.04.005 10.1109/TAES.2014.120731 10.1016/j.neucom.2014.09.047 10.1016/j.neunet.2012.12.009 10.1016/j.asoc.2015.11.023 10.1109/TCNS.2015.2401172 10.1016/j.neucom.2018.11.071 10.2298/CSIS120121043Z 10.1109/TNN.2005.857946 10.1016/j.neucom.2011.02.007 10.1016/j.neucom.2017.06.030 10.1109/TNN.2002.1031938 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2019.2891252 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 3369 |
ExternalDocumentID | 30716052 10_1109_TNNLS_2019_2891252 8630984 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Research Foundation of Education Bureau of Hunan Province of China grantid: 15B192 – fundername: Natural Science Foundation of Hunan Province grantid: 2016JJ2101; 2017JJ3258; 2018TP1018; 2018RS3065 funderid: 10.13039/501100004735 – fundername: National Natural Science Foundation of China grantid: 61866013; 61503152 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61563017; 61662025; 61473259 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-61667023b73df1d2d25deeef72b113df1f00c04897f4c86ee1aa40d796762d803 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 08:03:40 EDT 2025 Sun Jun 29 14:04:08 EDT 2025 Thu Jan 02 22:59:09 EST 2025 Thu Apr 24 23:04:30 EDT 2025 Tue Jul 01 00:27:29 EDT 2025 Wed Aug 27 02:40:41 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-61667023b73df1d2d25deeef72b113df1f00c04897f4c86ee1aa40d796762d803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3172-3490 0000-0002-2635-7716 0000-0002-1049-6244 |
PMID | 30716052 |
PQID | 2311107574 |
PQPubID | 85436 |
PageCount | 10 |
ParticipantIDs | pubmed_primary_30716052 ieee_primary_8630984 proquest_miscellaneous_2179532268 crossref_primary_10_1109_TNNLS_2019_2891252 proquest_journals_2311107574 crossref_citationtrail_10_1109_TNNLS_2019_2891252 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 dyn (ref9) 1983; 41 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref33 doi: 10.1016/j.asoc.2014.06.045 – ident: ref17 doi: 10.1109/TCSII.2003.814805 – ident: ref3 doi: 10.1109/TCYB.2013.2253461 – ident: ref30 doi: 10.1007/s00521-011-0692-5 – ident: ref36 doi: 10.1016/j.neunet.2018.05.008 – ident: ref6 doi: 10.1016/j.automatica.2018.11.001 – ident: ref5 doi: 10.1109/TNNLS.2016.2574363 – ident: ref13 doi: 10.1109/TNNLS.2015.2425301 – ident: ref8 doi: 10.1023/A:1023073621589 – ident: ref38 doi: 10.1109/TSMC.2018.2870489 – ident: ref4 doi: 10.1109/TNNLS.2015.2469147 – ident: ref18 doi: 10.1109/TSMCB.2003.811519 – ident: ref28 doi: 10.1016/j.physleta.2009.03.011 – ident: ref32 doi: 10.1007/s11063-012-9241-1 – ident: ref23 doi: 10.1088/1751-8113/43/24/245202 – volume: 41 start-page: 165 year: 1983 ident: ref9 article-title: The numerical solution of equality-constrained quadratic programming problems publication-title: Math Comput – ident: ref7 doi: 10.1007/BF02591962 – ident: ref25 doi: 10.1016/j.ipl.2018.10.004 – ident: ref37 doi: 10.1109/TNNLS.2015.2497715 – ident: ref24 doi: 10.1109/TSMC.2018.2836968 – ident: ref10 doi: 10.1016/S0375-9601(02)00424-3 – ident: ref11 doi: 10.1109/TNN.2006.881046 – ident: ref19 doi: 10.1088/0957-0233/17/8/007 – ident: ref29 doi: 10.1109/TII.2017.2717020 – ident: ref12 doi: 10.1109/TNN.2007.910736 – ident: ref16 doi: 10.1109/TII.2018.2867169 – ident: ref22 doi: 10.1016/j.ipl.2011.05.010 – ident: ref15 doi: 10.1016/j.mechatronics.2008.04.005 – ident: ref2 doi: 10.1109/TAES.2014.120731 – ident: ref34 doi: 10.1016/j.neucom.2014.09.047 – ident: ref14 doi: 10.1016/j.neunet.2012.12.009 – ident: ref35 doi: 10.1016/j.asoc.2015.11.023 – ident: ref1 doi: 10.1109/TCNS.2015.2401172 – ident: ref21 doi: 10.1016/j.neucom.2018.11.071 – ident: ref31 doi: 10.2298/CSIS120121043Z – ident: ref27 doi: 10.1109/TNN.2005.857946 – ident: ref20 doi: 10.1016/j.neucom.2011.02.007 – ident: ref39 doi: 10.1016/j.neucom.2017.06.030 – ident: ref26 doi: 10.1109/TNN.2002.1031938 |
SSID | ssj0000605649 |
Score | 2.5480726 |
Snippet | Zeroing neural network (ZNN), as a powerful calculating tool, is extensively applied in various computation and optimization fields. Convergence and... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3360 |
SubjectTerms | Additive noise Computational efficiency Computational modeling Computer simulation Computing time Convergence Design Design formula Economic models finite-time convergence Neural networks Noise Noise tolerance Optimization quadratic optimization Quadratic programming Recurrent neural networks zeroing neural network (ZNN) |
Title | Computing Time-Varying Quadratic Optimization With Finite-Time Convergence and Noise Tolerance: A Unified Framework for Zeroing Neural Network |
URI | https://ieeexplore.ieee.org/document/8630984 https://www.ncbi.nlm.nih.gov/pubmed/30716052 https://www.proquest.com/docview/2311107574 https://www.proquest.com/docview/2179532268 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrhQoDwWCjISN_A2zsNOuFUVqwpBEGILKy6RY4_VFSVB2-TCj-A3M-M8JBAgbpEfsa0Zj7-x58HYs9Raraz3wkhrRZrGTpg8BaGBchWCy7QLBrKlOr9IX2-yzR57MfvCAEAwPoMlfYa3fNfanq7KTnKVREWe7rN9VNwGX635PiVCXK4C2o2likWc6M3kIxMVJ-uyfPOBDLmKJWoYeKhTFhtkb4m94l-OpJBj5e9wMxw7q0P2dprwYG3yZdl39dJ-_y2W4_-u6Ba7OeJPfjowzG22B80ddjjlduDjVj9iP4YiPNg4eYmIj2ZHDlH8fW8cMY3l71DYfB29OPmnbXfJV1sCsILa8zOyZg-OncBN43jZbq-Br9sroEwe8JKfcoS7HgEwX032YRwBNP8Mu5YGoqghONFyMFO_yy5Wr9Zn52LM3SBskskONVKlNOKBWifOSxe7OHO4eq_jWkoq8lFkUXoU2qc2VwDSmDRyulAonV0eJffYQdM28IDxOtFeUZh2MBRcMKu9UyrzvihqRJu1XDA5ka-yY2Bzyq9xVQUFJyqqQP2KqF-N1F-w53Ofb0NYj3-2PiLSzS1Hqi3Y8cQl1bjzryvEy6RSZxqrn87VuGfpIcY00PbYBqVghpJU5Qt2f-Cu-d8TUz7885iP2A2a2eANecwOul0PjxEWdfWTsB9-AoQxB6A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELZKOcCFAuWxUMBIcELZxk5iJ0gcqsJqS5cgxBZWvYTED3XVkqDdRAh-BL-Av8J_Y8Z5SCDgVolblDhO5Hwz840zD0IehUpJoaz1cqaUF4Zce3kcGk8a7FVodCS1C5BNxfQofLmIFhvk-5ALY4xxwWdmjIfuX76uVINbZbuxCPwkDrsQykPz5TM4aOtnB8_haz7mfPJivj_1uh4CngoiVoNnJIQEu1TIQFumueaRhnmt5AVjeMr6vgIUJ9KGKhbGsDwPfS0TAVpCx34A814gF4FnRLzNDht2cHzwBITj15wJ7vFALvqsHD_Znafp7C2GjiVj8GmARmDfHBAoBnfxX4yg6-ryd4LrDN1ki_zol6iNbzkdN3UxVl9_qx75v67hVXKlY9h0rxWJa2TDlNfJVt-9gnbKbJt8a0-B6aaYB-O9y1eY8kXfNLlGsVD0NajTj12eKn2_rE_oZIkU3cPxdB_j9V3qqqF5qWlaLdeGzqszg71KzFO6R4HQW6D4dNJHwFFwEeixWVX4IKyLAi-atoH4N8jRuazKTbJZVqW5TWgRSCuwEL3JsXxiVFgtRGRtkhTApws2IqyHS6a60u3YQeQscy6cn2QObRmiLevQNiJPhns-tYVL_jl6G6EyjOxQMiI7PSqzTretM_AIcNMgknD54XAZtBL-aspLUzUwBvR8BLZCxCNyq0XzMHcvBHf-_MwH5NJ0_mqWzQ7Sw7vkMr5lm_u5QzbrVWPuAQmsi_tOFin5cN7A_QmFDmQm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+Time-Varying+Quadratic+Optimization+With+Finite-Time+Convergence+and+Noise+Tolerance%3A+A+Unified+Framework+for+Zeroing+Neural+Network&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xiao%2C+Lin&rft.au=Li%2C+Kenli&rft.au=Duan%2C+Mingxing&rft.date=2019-11-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=30&rft.issue=11&rft.spage=3360&rft.epage=3369&rft_id=info:doi/10.1109%2FTNNLS.2019.2891252&rft_id=info%3Apmid%2F30716052&rft.externalDocID=8630984 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |