Computing Time-Varying Quadratic Optimization With Finite-Time Convergence and Noise Tolerance: A Unified Framework for Zeroing Neural Network
Zeroing neural network (ZNN), as a powerful calculating tool, is extensively applied in various computation and optimization fields. Convergence and noise-tolerance performance are always pursued and investigated in the ZNN field. Up to now, there are no unified ZNN models that simultaneously achiev...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 30; no. 11; pp. 3360 - 3369 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Zeroing neural network (ZNN), as a powerful calculating tool, is extensively applied in various computation and optimization fields. Convergence and noise-tolerance performance are always pursued and investigated in the ZNN field. Up to now, there are no unified ZNN models that simultaneously achieve the finite-time convergence and inherent noise tolerance for computing time-varying quadratic optimization problems, although this superior property is highly demanded in practical applications. In this paper, for computing time-varying quadratic optimization within finite-time convergence in the presence of various additive noises, a new framework for ZNN is designed to fill this gap in a unified manner. Specifically, different from the previous design formulas either possessing finite-time convergence or possessing noise-tolerance performance, a new design formula with finite-time convergence and noise tolerance is proposed in a unified framework (and thus called unified design formula). Then, on the basis of the unified design formula, a unified ZNN (UZNN) is, thus, proposed and investigated in the unified framework of ZNN for computing time-varying quadratic optimization problems in the presence of various additive noises. In addition, theoretical analyses of the unified design formula and the UZNN model are given to guarantee the finite-time convergence and inherent noise tolerance. Computer simulation results verify the superior property of the UZNN model for computing time-varying quadratic optimization problems, as compared with the previously proposed ZNN models. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2019.2891252 |