Asymmetric triplex metallohelices with high and selective activity against cancer cells

Small cationic amphiphilic α-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, th...

Full description

Saved in:
Bibliographic Details
Published inNature chemistry Vol. 6; no. 9; pp. 797 - 803
Main Authors Faulkner, Alan D., Kaner, Rebecca A., Abdallah, Qasem M. A., Clarkson, Guy, Fox, David J., Gurnani, Pratik, Howson, Suzanne E., Phillips, Roger M., Roper, David I., Simpson, Daniel H., Scott, Peter
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.09.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Small cationic amphiphilic α-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, the high symmetry and modest functionality of current systems offer little scope to tailor the structure to interact with specific biomolecular targets, or to create libraries for phenotypic screens. Here, we report the highly stereoselective asymmetric self-assembly of very stable, functionalized metallohelices. Their anti-parallel head-to-head-to-tail ‘triplex’ strand arrangement creates an amphipathic functional topology akin to that of the active sub-units of, for example, host-defence peptides and p53. The metallohelices display high, structure-dependent toxicity to the human colon carcinoma cell-line HCT116 p53 ++ , causing dramatic changes in the cell cycle without DNA damage. They have lower toxicity to human breast adenocarcinoma cells (MDA-MB-468) and, most remarkably, they show no significant toxicity to the bacteria methicillin-resistant Staphylococcus aureus and Escherichia coli . Water-soluble metallohelices containing an antiparallel head-to-head-to-tail arrangement of strands are reported. This amphipathic functional topology is akin to that of host-defence peptides. The metallohelices show high and selective toxicity to a cancer cell line, causing dramatic changes in the cell cycle without DNA damage. In contrast, there is no significant toxicity to MRSA and Escherichia coli .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1755-4330
1755-4349
1755-4349
DOI:10.1038/nchem.2024