Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements

Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectri...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 11; no. 2; pp. 300 - 313
Main Authors Leicht, Lennart, Eilebrecht, Benjamin, Weyer, Soren, Leonhardt, Steffen, Teichmann, Daniel
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1932-4545
1940-9990
DOI:10.1109/TBCAS.2016.2613097