On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system
Optical barcoding technology based on quantum dot (QD)-encoded microparticles has attracted increasing attention in high-throughput multiplexed biological assays, which is realized by embedding different-sized QDs into polymeric matrixes at precisely controlled ratios. Considering the advantage of d...
Saved in:
Published in | Lab on a chip Vol. 11; no. 15; pp. 2561 - 2568 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Optical barcoding technology based on quantum dot (QD)-encoded microparticles has attracted increasing attention in high-throughput multiplexed biological assays, which is realized by embedding different-sized QDs into polymeric matrixes at precisely controlled ratios. Considering the advantage of droplet-based microfluidics, producing monodisperse particles with precise control over the size, shape and composition, we present a proof-of-concept approach for on-demand preparation of QD-encoded microparticles based on this versatile new strategy. Combining a flow-focusing microchannel with a double T-junction in a microfluidic chip, biocompatible QD-doped microparticles were constructed by shearing sodium alginate solution into microdroplets and on-chip gelating these droplets into a hydrogel matrix to encapsulate CdSe/ZnS QDs. Size-controllable QD-doped hydrogel microparticles were produced under the optimum flow conditions, and their fluorescent properties were investigated. A novel multiplex optical encoding strategy was realized by loading different sized QDs into a single droplet (and thus a hydrogel microparticle) with different concentrations, which was triggered by tuning the flow rates of the sodium alginate solutions entrapped with different-colored QDs. A series of QD-encoded microparticles were controllably, and continuously, produced in a single step with the present approach. Their application in a model immunoassay demonstrated the potential practicability of QD-encoded hydrogel microparticles in multiplexed biomolecular detection. This simple and robust strategy should be further improved and practically used in making barcode microparticles with various polymer matrixes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/c1lc20150f |