An Assessment System for Post-Stroke Manual Dexterity Using Principal Component Analysis and Logistic Regression

Hand function assessment is crucial for patients with stroke, who must perform regular repetitive tasks during rehabilitation. However, the conventional evaluation method is subjective and not uniform among physicians. A novel method is proposed in this paper to analyze raw data from a data glove eq...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 27; no. 8; pp. 1626 - 1634
Main Authors Lin, Bor-Shing, Lee, I-Jung, Hsiao, Pei-Chi, Hwang, Yi-Ting
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2019.2928719

Cover

Loading…
More Information
Summary:Hand function assessment is crucial for patients with stroke, who must perform regular repetitive tasks during rehabilitation. However, the conventional evaluation method is subjective and not uniform among physicians. A novel method is proposed in this paper to analyze raw data from a data glove equipped with 16 six-axis inertial measurement units. The proposed method can provide accurate assistance to physicians and objectively assess patients' hand function. Three tasks (the thumb task, the grip task, and the card-turning task) were conducted to evaluate participants' hand function. Representative parameters of hand function in each task and overall evaluation were extracted through principal component analysis and used to develop logistic regression models. The results revealed that all three tasks can be used to perfectly predict healthy subjects and subjects with stroke, with the thumb task exhibiting the highest predictive accuracy for the severity of hand dysfunction. Overall, the proposed method can serve as an efficient method for physicians to assess the hand function of patients with stroke.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2019.2928719