Binary Multi-View Clustering

Clustering is a long-standing important research problem, however, remains challenging when handling large-scale image data from diverse sources. In this paper, we present a novel Binary Multi-View Clustering (BMVC) framework, which can dexterously manipulate multi-view image data and easily scale t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 41; no. 7; pp. 1774 - 1782
Main Authors Zhang, Zheng, Liu, Li, Shen, Fumin, Shen, Heng Tao, Shao, Ling
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Clustering is a long-standing important research problem, however, remains challenging when handling large-scale image data from diverse sources. In this paper, we present a novel Binary Multi-View Clustering (BMVC) framework, which can dexterously manipulate multi-view image data and easily scale to large data. To achieve this goal, we formulate BMVC by two key components: compact collaborative discrete representation learning and binary clustering structure learning, in a joint learning framework. Specifically, BMVC collaboratively encodes the multi-view image descriptors into a compact common binary code space by considering their complementary information; the collaborative binary representations are meanwhile clustered by a binary matrix factorization model, such that the cluster structures are optimized in the Hamming space by pure, extremely fast bit-operations. For efficiency, the code balance constraints are imposed on both binary data representations and cluster centroids. Finally, the resulting optimization problem is solved by an alternating optimization scheme with guaranteed fast convergence. Extensive experiments on four large-scale multi-view image datasets demonstrate that the proposed method enjoys the significant reduction in both computation and memory footprint, while observing superior (in most cases) or very competitive performance, in comparison with state-of-the-art clustering methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2018.2847335