Fixed-Time Leader-Follower Consensus of Networked Nonlinear Systems via Event/Self-Triggered Control

This brief addresses the fixed-time event/self-triggered leader-follower consensus problems for networked multi-agent systems subject to nonlinear dynamics. First, we present an event-triggered control strategy to achieve the fixed-time consensus, and a new measurement error is designed to avoid Zen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 11; pp. 5029 - 5037
Main Authors Liu, Jian, Zhang, Yanling, Yu, Yao, Sun, Changyin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This brief addresses the fixed-time event/self-triggered leader-follower consensus problems for networked multi-agent systems subject to nonlinear dynamics. First, we present an event-triggered control strategy to achieve the fixed-time consensus, and a new measurement error is designed to avoid Zeno behavior. Then, two new self-triggered control strategies are presented to avoid continuous triggering condition monitoring. Moreover, under the proposed self-triggered control strategies, a strictly positive minimal triggering interval of each follower is given to exclude Zeno behavior. Compared with the existing fixed-time event-triggered results, we propose two new self-triggered control strategies, and the nonlinear term is more general. Finally, the performances of the consensus tracking algorithms are illustrated by a simulation example.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2019.2957069