Cooperative Adaptive Output Regulation for Lower Triangular Nonlinear Multi-Agent Systems Subject to Jointly Connected Switching Networks
The cooperative global robust output regulation problem for multi-agent systems is a generalization of the leader-following consensus problem. The problem has been studied for various multi-agent systems over connected static networks and for some special classes of nonlinear multi-agent systems ove...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 31; no. 5; pp. 1724 - 1734 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The cooperative global robust output regulation problem for multi-agent systems is a generalization of the leader-following consensus problem. The problem has been studied for various multi-agent systems over connected static networks and for some special classes of nonlinear multi-agent systems over jointly connected switching networks. In this paper, we further consider the same problem for a class of heterogeneous lower triangular nonlinear multi-agent systems over jointly connected switching networks. This class of systems is quite general in that it contains inverse dynamics, is of any order, and its subsystems can have different relative degrees. We will integrate the adaptive distributed observer and the distributed internal model approach to come up with a recursive approach to deal with our problem. We will also apply our approach to a leader-following consensus problem for a group of hyperchaotic Lorenz systems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2019.2922174 |