Supervised Feature Selection via Collaborative Neurodynamic Optimization

As a crucial part of machine learning and pattern recognition, feature selection aims at selecting a subset of the most informative features from the set of all available features. In this article, supervised feature selection is at first formulated as a mixed-integer optimization problem with an ob...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 5; pp. 6878 - 6892
Main Authors Wang, Yadi, Wang, Wang, Pal, Nikhil R.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As a crucial part of machine learning and pattern recognition, feature selection aims at selecting a subset of the most informative features from the set of all available features. In this article, supervised feature selection is at first formulated as a mixed-integer optimization problem with an objective function of weighted feature redundancy and relevancy subject to a cardinality constraint on the number of selected features. It is equivalently reformulated as a bound-constrained mixed-integer optimization problem by augmenting the objective function with a penalty function for realizing the cardinality constraint. With additional bilinear and linear equality constraints for realizing the integrality constraints, it is further reformulated as a bound-constrained biconvex optimization problem with two more penalty terms. Two collaborative neurodynamic optimization (CNO) approaches are proposed for solving the formulated and reformulated feature selection problems. One of the proposed CNO approaches uses a population of discrete-time recurrent neural networks (RNNs), and the other use a pair of continuous-time projection networks operating concurrently on two timescales. Experimental results on 13 benchmark datasets are elaborated to substantiate the superiority of the CNO approaches to several mainstream methods in terms of average classification accuracy with three commonly used classifiers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2022.3213167