Adaptive Critic Learning for Constrained Optimal Event-Triggered Control With Discounted Cost
This article studies an optimal event-triggered control (ETC) problem of nonlinear continuous-time systems subject to asymmetric control constraints. The present nonlinear plant differs from many studied systems in that its equilibrium point is nonzero. First, we introduce a discounted cost for such...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 32; no. 1; pp. 91 - 104 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2020.2976787 |
Cover
Loading…
Abstract | This article studies an optimal event-triggered control (ETC) problem of nonlinear continuous-time systems subject to asymmetric control constraints. The present nonlinear plant differs from many studied systems in that its equilibrium point is nonzero. First, we introduce a discounted cost for such a system in order to obtain the optimal ETC without making coordinate transformations. Then, we present an event-triggered Hamilton-Jacobi-Bellman equation (ET-HJBE) arising in the discounted-cost constrained optimal ETC problem. After that, we propose an event-triggering condition guaranteeing a positive lower bound for the minimal intersample time. To solve the ET-HJBE, we construct a critic network under the framework of adaptive critic learning. The critic network weight vector is tuned through a modified gradient descent method, which simultaneously uses historical and instantaneous state data. By employing the Lyapunov method, we prove that the uniform ultimate boundedness of all signals in the closed-loop system is guaranteed. Finally, we provide simulations of a pendulum system and an oscillator system to validate the obtained optimal ETC strategy. |
---|---|
AbstractList | This article studies an optimal event-triggered control (ETC) problem of nonlinear continuous-time systems subject to asymmetric control constraints. The present nonlinear plant differs from many studied systems in that its equilibrium point is nonzero. First, we introduce a discounted cost for such a system in order to obtain the optimal ETC without making coordinate transformations. Then, we present an event-triggered Hamilton-Jacobi-Bellman equation (ET-HJBE) arising in the discounted-cost constrained optimal ETC problem. After that, we propose an event-triggering condition guaranteeing a positive lower bound for the minimal intersample time. To solve the ET-HJBE, we construct a critic network under the framework of adaptive critic learning. The critic network weight vector is tuned through a modified gradient descent method, which simultaneously uses historical and instantaneous state data. By employing the Lyapunov method, we prove that the uniform ultimate boundedness of all signals in the closed-loop system is guaranteed. Finally, we provide simulations of a pendulum system and an oscillator system to validate the obtained optimal ETC strategy.This article studies an optimal event-triggered control (ETC) problem of nonlinear continuous-time systems subject to asymmetric control constraints. The present nonlinear plant differs from many studied systems in that its equilibrium point is nonzero. First, we introduce a discounted cost for such a system in order to obtain the optimal ETC without making coordinate transformations. Then, we present an event-triggered Hamilton-Jacobi-Bellman equation (ET-HJBE) arising in the discounted-cost constrained optimal ETC problem. After that, we propose an event-triggering condition guaranteeing a positive lower bound for the minimal intersample time. To solve the ET-HJBE, we construct a critic network under the framework of adaptive critic learning. The critic network weight vector is tuned through a modified gradient descent method, which simultaneously uses historical and instantaneous state data. By employing the Lyapunov method, we prove that the uniform ultimate boundedness of all signals in the closed-loop system is guaranteed. Finally, we provide simulations of a pendulum system and an oscillator system to validate the obtained optimal ETC strategy. This article studies an optimal event-triggered control (ETC) problem of nonlinear continuous-time systems subject to asymmetric control constraints. The present nonlinear plant differs from many studied systems in that its equilibrium point is nonzero. First, we introduce a discounted cost for such a system in order to obtain the optimal ETC without making coordinate transformations. Then, we present an event-triggered Hamilton-Jacobi-Bellman equation (ET-HJBE) arising in the discounted-cost constrained optimal ETC problem. After that, we propose an event-triggering condition guaranteeing a positive lower bound for the minimal intersample time. To solve the ET-HJBE, we construct a critic network under the framework of adaptive critic learning. The critic network weight vector is tuned through a modified gradient descent method, which simultaneously uses historical and instantaneous state data. By employing the Lyapunov method, we prove that the uniform ultimate boundedness of all signals in the closed-loop system is guaranteed. Finally, we provide simulations of a pendulum system and an oscillator system to validate the obtained optimal ETC strategy. |
Author | Wei, Qinglai Yang, Xiong |
Author_xml | – sequence: 1 givenname: Xiong orcidid: 0000-0002-0128-3036 surname: Yang fullname: Yang, Xiong email: xiong.yang@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 2 givenname: Qinglai orcidid: 0000-0001-7002-9800 surname: Wei fullname: Wei, Qinglai email: qinglai.wei@ia.ac.cn organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32167914$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1OGzEUhS0EAgq8AEhopG7YTOp_zyxRCi1SBAuC6KayPDN3gtHEDrYHqW9fh6RZsKg3tq6_Y997zhe077wDhM4JnhCC62_z-_vZ44Riiie0VlJVag8dUyJpSVlV7e_O6tcROovxFeclsZC8PkRHLF-qmvBj9Pu6M6tk36GYBptsW8zABGfdouh9KKbexRSMddAVDxlbmqG4eQeXynmwiwWEXM9MCn4onm16Kb7b2PrRpY96TKfooDdDhLPtfoKebm_m05_l7OHH3fR6VrZMkFQKDpL0Dca876BRrMEtUYRiaURDlSSqIwxq0wgllFKCizwhAFedNACdEuwEXW3eXQX_NkJMepkbgWEwDvwYdbZBMSarmmf06yf01Y_B5e405UrUEnPCMnW5pcZmCZ1ehTx7-KP_GZcBugHa4GMM0O8QgvU6IP0RkF4HpLcBZVH1SdTaZJJdO2js8H_pxUZqAWD3V40ZZZyzv0-TnHo |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1007_s11071_024_09778_3 crossref_primary_10_1007_s11424_022_1146_0 crossref_primary_10_1109_TASE_2023_3299275 crossref_primary_10_1109_TCSI_2022_3206370 crossref_primary_10_1002_rnc_6709 crossref_primary_10_1109_TNNLS_2021_3094901 crossref_primary_10_1109_TSMC_2023_3326466 crossref_primary_10_1016_j_neucom_2023_127013 crossref_primary_10_1109_TCYB_2022_3196003 crossref_primary_10_1109_TCYB_2025_3530951 crossref_primary_10_1109_TNNLS_2021_3137524 crossref_primary_10_1016_j_jfranklin_2022_12_021 crossref_primary_10_1016_j_neunet_2024_106413 crossref_primary_10_1016_j_isatra_2024_09_011 crossref_primary_10_1109_TNNLS_2022_3224029 crossref_primary_10_1109_TCYB_2024_3354945 crossref_primary_10_1109_TNNLS_2021_3115960 crossref_primary_10_1109_TNNLS_2023_3292154 crossref_primary_10_1002_asjc_3167 crossref_primary_10_1007_s11071_023_08862_4 crossref_primary_10_1109_TNNLS_2022_3166531 crossref_primary_10_1109_TNNLS_2022_3201521 crossref_primary_10_1109_TNNLS_2023_3335138 crossref_primary_10_3390_en13195069 crossref_primary_10_1007_s00521_022_07010_0 crossref_primary_10_1109_TASE_2024_3368438 crossref_primary_10_1109_TNNLS_2021_3104839 crossref_primary_10_1109_TNNLS_2022_3183020 crossref_primary_10_1080_00207721_2023_2209846 crossref_primary_10_1109_TNNLS_2023_3311927 crossref_primary_10_1007_s11071_021_06816_2 crossref_primary_10_1016_j_cnsns_2024_108308 crossref_primary_10_1007_s10489_023_05184_1 crossref_primary_10_1109_TNNLS_2023_3326867 crossref_primary_10_1002_oca_2782 crossref_primary_10_1109_TSMC_2022_3220028 crossref_primary_10_1007_s00521_021_06476_8 crossref_primary_10_1109_TSMC_2021_3130925 crossref_primary_10_1007_s11071_022_07513_4 crossref_primary_10_1109_TSMC_2023_3247888 crossref_primary_10_1109_TSMC_2024_3461781 crossref_primary_10_1016_j_jfranklin_2025_107519 crossref_primary_10_1002_rnc_7767 crossref_primary_10_1016_j_isatra_2025_01_045 crossref_primary_10_1016_j_ast_2023_108219 crossref_primary_10_1016_j_neucom_2023_126965 crossref_primary_10_1002_acs_3510 crossref_primary_10_1016_j_jai_2023_11_002 crossref_primary_10_1016_j_neucom_2021_10_046 crossref_primary_10_1109_TR_2024_3407090 crossref_primary_10_1109_TNNLS_2021_3105664 crossref_primary_10_1007_s12555_021_0674_z crossref_primary_10_1109_TNNLS_2021_3138924 crossref_primary_10_1016_j_neucom_2024_128176 crossref_primary_10_1109_TSMC_2023_3257031 crossref_primary_10_1109_TNNLS_2022_3164727 crossref_primary_10_1109_TMRB_2025_3527695 crossref_primary_10_1002_rnc_6365 crossref_primary_10_1109_JAS_2023_123843 crossref_primary_10_1109_TFUZZ_2023_3294928 crossref_primary_10_1002_rnc_7099 crossref_primary_10_3934_math_20231046 |
Cites_doi | 10.1109/TNNLS.2016.2614002 10.1109/TSMC.2018.2853089 10.1109/CDC.2010.5717148 10.1109/TNNLS.2017.2660070 10.1109/TAC.2007.904277 10.1109/TNNLS.2016.2593743 10.1109/JAS.2014.7004686 10.1109/TNNLS.2015.2464080 10.1016/j.automatica.2013.09.043 10.1016/j.automatica.2014.05.011 10.1017/CBO9780511810817 10.1109/TSMC.2019.2898370 10.1109/TSMC.2017.2737542 10.1109/ACC.1998.703328 10.1109/TNNLS.2017.2669099 10.1109/TNNLS.2016.2539366 10.1109/TII.2017.2771256 10.1109/TNNLS.2018.2817256 10.1109/TCYB.2017.2741342 10.1109/TNNLS.2016.2586303 10.1109/TNNLS.2015.2503980 10.1109/TIE.2016.2597763 10.1109/TSMC.2018.2889377 10.1109/TCYB.2018.2823199 10.1016/j.neucom.2019.02.034 10.1109/TCYB.2015.2417170 10.1109/TSMC.2017.2771516 10.1109/TNNLS.2016.2609500 10.1109/TNNLS.2018.2791419 10.1109/TSMC.2016.2642118 10.1109/TNNLS.2016.2541020 10.1109/CDC.2012.6425820 10.1109/TNNLS.2012.2227339 10.1109/TII.2018.2884214 10.1016/0893-6080(90)90005-6 10.1007/s00521-012-1249-y 10.1109/TASE.2014.2303139 10.1016/j.neunet.2018.05.005 10.1007/978-3-319-50815-3 10.1109/TNNLS.2017.2773458 10.1109/TNNLS.2015.2487972 10.1109/TCYB.2014.2319577 10.1109/TSMCB.2008.922019 10.1109/TNNLS.2017.2654324 10.1002/9780470182963 10.1109/TNNLS.2017.2693205 10.1109/TNNLS.2017.2751018 10.1002/9781119132677 10.1109/TIE.2018.2856198 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2020.2976787 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 104 |
ExternalDocumentID | 32167914 10_1109_TNNLS_2020_2976787 9032344 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61973228; 61722312 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-54e61fb004fdeb73b0c171206a5b27617d13e9ab575777545388ee47d6aeed753 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 08:50:31 EDT 2025 Mon Jun 30 03:12:43 EDT 2025 Thu Jan 02 22:57:36 EST 2025 Tue Jul 01 00:27:33 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Aug 27 06:01:50 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-54e61fb004fdeb73b0c171206a5b27617d13e9ab575777545388ee47d6aeed753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7002-9800 0000-0002-0128-3036 |
PMID | 32167914 |
PQID | 2475960413 |
PQPubID | 85436 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_32167914 crossref_primary_10_1109_TNNLS_2020_2976787 ieee_primary_9032344 proquest_journals_2475960413 proquest_miscellaneous_2377336894 crossref_citationtrail_10_1109_TNNLS_2020_2976787 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan. 2021-1-00 2021-Jan 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan. |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref10 ref17 ref19 ref18 liu (ref1) 2008; 38 abu-khalaf (ref30) 2006 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 yang (ref16) 0 ref8 ref7 ref9 ref3 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref38 apostol (ref39) 1974 powell (ref4) 2007 liu (ref5) 2017 ref24 lewis (ref49) 1999 ref23 ref26 ref25 ref20 ref22 vamvoudakis (ref40) 2014; 1 ref21 khalil (ref54) 2002 ref28 ref27 ref29 vrabie (ref6) 2013 |
References_xml | – year: 2013 ident: ref6 publication-title: Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles – year: 2006 ident: ref30 publication-title: Nonlinear $\text H _ 2 / \text H _ \infty $ Constrained Feedback Control A Practical Design Approach Using Neural Networks – ident: ref48 doi: 10.1109/TNNLS.2016.2614002 – ident: ref44 doi: 10.1109/TSMC.2018.2853089 – ident: ref47 doi: 10.1109/CDC.2010.5717148 – ident: ref2 doi: 10.1109/TNNLS.2017.2660070 – ident: ref55 doi: 10.1109/TAC.2007.904277 – year: 0 ident: ref16 article-title: Decentralized event-triggered control for a class of nonlinear-interconnected systems using reinforcement learning publication-title: IEEE Trans Cybern – ident: ref7 doi: 10.1109/TNNLS.2016.2593743 – volume: 1 start-page: 282 year: 2014 ident: ref40 article-title: Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2014.7004686 – year: 2002 ident: ref54 publication-title: Nonlinear Systems – ident: ref51 doi: 10.1109/TNNLS.2015.2464080 – ident: ref31 doi: 10.1016/j.automatica.2013.09.043 – ident: ref35 doi: 10.1016/j.automatica.2014.05.011 – ident: ref50 doi: 10.1017/CBO9780511810817 – ident: ref42 doi: 10.1109/TSMC.2019.2898370 – ident: ref29 doi: 10.1109/TSMC.2017.2737542 – ident: ref24 doi: 10.1109/ACC.1998.703328 – ident: ref53 doi: 10.1109/TNNLS.2017.2669099 – ident: ref11 doi: 10.1109/TNNLS.2016.2539366 – ident: ref37 doi: 10.1109/TII.2017.2771256 – ident: ref19 doi: 10.1109/TNNLS.2018.2817256 – ident: ref15 doi: 10.1109/TCYB.2017.2741342 – ident: ref12 doi: 10.1109/TNNLS.2016.2586303 – ident: ref8 doi: 10.1109/TNNLS.2015.2503980 – ident: ref45 doi: 10.1109/TIE.2016.2597763 – ident: ref34 doi: 10.1109/TSMC.2018.2889377 – ident: ref20 doi: 10.1109/TCYB.2018.2823199 – ident: ref38 doi: 10.1016/j.neucom.2019.02.034 – year: 1974 ident: ref39 publication-title: Mathematical Analysis – ident: ref23 doi: 10.1109/TCYB.2015.2417170 – ident: ref52 doi: 10.1109/TSMC.2017.2771516 – ident: ref18 doi: 10.1109/TNNLS.2016.2609500 – ident: ref41 doi: 10.1109/TNNLS.2018.2791419 – ident: ref33 doi: 10.1109/TSMC.2016.2642118 – ident: ref28 doi: 10.1109/TNNLS.2016.2541020 – ident: ref43 doi: 10.1109/CDC.2012.6425820 – ident: ref26 doi: 10.1109/TNNLS.2012.2227339 – ident: ref22 doi: 10.1109/TII.2018.2884214 – ident: ref46 doi: 10.1016/0893-6080(90)90005-6 – ident: ref36 doi: 10.1007/s00521-012-1249-y – ident: ref25 doi: 10.1109/TASE.2014.2303139 – ident: ref3 doi: 10.1016/j.neunet.2018.05.005 – year: 2017 ident: ref5 publication-title: Adaptive Dynamic Programming With Applications in Optimal Control doi: 10.1007/978-3-319-50815-3 – ident: ref14 doi: 10.1109/TNNLS.2017.2773458 – ident: ref32 doi: 10.1109/TNNLS.2015.2487972 – ident: ref17 doi: 10.1109/TCYB.2014.2319577 – volume: 38 start-page: 988 year: 2008 ident: ref1 article-title: Adaptive critic learning techniques for engine torque and air-fuel ratio control publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2008.922019 – ident: ref9 doi: 10.1109/TNNLS.2017.2654324 – year: 2007 ident: ref4 publication-title: Approximate Dynamic Programming Solving the Curses of Dimensionality doi: 10.1002/9780470182963 – ident: ref13 doi: 10.1109/TNNLS.2017.2693205 – ident: ref27 doi: 10.1109/TNNLS.2017.2751018 – year: 1999 ident: ref49 publication-title: Neural Network Control of Robot Manipulators and Nonlinear Systems – ident: ref10 doi: 10.1002/9781119132677 – ident: ref21 doi: 10.1109/TIE.2018.2856198 |
SSID | ssj0000605649 |
Score | 2.5848105 |
Snippet | This article studies an optimal event-triggered control (ETC) problem of nonlinear continuous-time systems subject to asymmetric control constraints. The... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 91 |
SubjectTerms | Adaptive control Adaptive critic designs (ACDs) adaptive critic learning (ACL) adaptive dynamic programming (ADP) Adaptive learning Adaptive systems constrained optimal control Constraints Continuous time systems Coordinate transformations Cost function Event triggered control event-triggered control (ETC) Feedback control Learning Lower bounds Nonlinear control Nonlinear systems Optimal control Pendulums reinforcement learning (RL) Robustness |
Title | Adaptive Critic Learning for Constrained Optimal Event-Triggered Control With Discounted Cost |
URI | https://ieeexplore.ieee.org/document/9032344 https://www.ncbi.nlm.nih.gov/pubmed/32167914 https://www.proquest.com/docview/2475960413 https://www.proquest.com/docview/2377336894 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PaBeKFAeCwUZiRtk69iJsz5W0KpCdDmwFXtBkR-TUgG7FZu98OuZcR4SCBC3KBnbsWbG8409ngF4UUSUSEA1QyXLjCw-6ZzGmNmZl4bsYagiXxS-mJvzy-LtslzuwKvxLgwipuAznPJjOsuP67DlrbJjK7XSRbELu-S4dXe1xv0USbjcJLSreEClq-VwR0ba48V8_u4DeYNKThUZYJLSfbilFZ9B5MUvJinVWPk73Exm5-wALoYf7qJNvky3rZ-GH7_lcvzfGd2B2z3-FCedwNyFHVzdg4OhtoPoVf0QPp1Ed8NLoeiKIYg-EeuVIJQruMxnKi6BUbwnsm_U5SlHTmYL8vavuP4n03AQvPh43X4Wb643qSpFer9p78Pl2eni9XnWl2LIgi7zNisLNHnDKt5E9JX2MuRVrqRxpVcVoaCYa7TOE_irOKceLaMzxKKKxpERJpfoAeyt1it8BMI7ahMLR-ChKRoTrI-ybIz1wQXbODeBfOBGHfo85Tyjr3XyV6StEzNrZmbdM3MCL8c2N12Wjn9SHzInRsqeCRM4Gphe94q8qRXnQzSSTP0Eno-fSQX5XMWtcL0lGl1xUsmZpS4edsIy9j3I2OM_j_kE9hUHyaQ9nSPYa79v8SmhnNY_S-L9E7jL9fI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkEvFCiFhQJG4gbZOnbirI9VH1pgdzmwFXtBkV8pFbBbsdkLv54Z5yGBWsQtSsZ2rJnxfLbnAfA684EHBKpJEDxP0OKjzsngEz2yXKE9dIWnQOHpTI3Ps_eLfLEFb_tYmBBCdD4LQ3qMd_l-5TZ0VHaouRQyy27B7ZyCcZtorf5EhSMyVxHvChpSyGLRRclwfTifzSafcD8o-FCgCUY53YE7UtAtRJr9YZRilZWbAWc0PGe7MO1-ufE3-Tbc1Hbofv2VzfF_53Qf7rUIlB01IvMAtsLyIex21R1Yq-x78OXImytaDFlTDoG1qVgvGOJcRoU-Y3mJ4NlHJPuBXZ6S72Qyx_3-BVUAJRpyg2efL-uv7ORyHetSxPfr-hGcn53Oj8dJW4whcTJP6yTPgkorUvLKB1tIy11apIIrk1tRIA7yqQzaWIR_BWXVw4V0FEJWeGXQDOOmaB-2l6tleALMGmzjM4Pwocoq5bT1PK-Uts44XRkzgLTjRunaTOU0o-9l3LFwXUZmlsTMsmXmAN70ba6aPB3_pN4jTvSULRMGcNAxvWxVeV0KyoioOBr7AbzqP6MS0s2KWYbVBmlkQWklRxq7eNwIS993J2NPrx_zJdwdz6eTcvJu9uEZ7AhymYknPAewXf_chOeIeWr7Ior6b6-9-To |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Critic+Learning+for+Constrained+Optimal+Event-Triggered+Control+With+Discounted+Cost&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Yang%2C+Xiong&rft.au=Wei%2C+Qinglai&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=32&rft.issue=1&rft.spage=91&rft_id=info:doi/10.1109%2FTNNLS.2020.2976787&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |