Adaptive Critic Learning for Constrained Optimal Event-Triggered Control With Discounted Cost

This article studies an optimal event-triggered control (ETC) problem of nonlinear continuous-time systems subject to asymmetric control constraints. The present nonlinear plant differs from many studied systems in that its equilibrium point is nonzero. First, we introduce a discounted cost for such...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 1; pp. 91 - 104
Main Authors Yang, Xiong, Wei, Qinglai
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2020.2976787

Cover

Loading…
Abstract This article studies an optimal event-triggered control (ETC) problem of nonlinear continuous-time systems subject to asymmetric control constraints. The present nonlinear plant differs from many studied systems in that its equilibrium point is nonzero. First, we introduce a discounted cost for such a system in order to obtain the optimal ETC without making coordinate transformations. Then, we present an event-triggered Hamilton-Jacobi-Bellman equation (ET-HJBE) arising in the discounted-cost constrained optimal ETC problem. After that, we propose an event-triggering condition guaranteeing a positive lower bound for the minimal intersample time. To solve the ET-HJBE, we construct a critic network under the framework of adaptive critic learning. The critic network weight vector is tuned through a modified gradient descent method, which simultaneously uses historical and instantaneous state data. By employing the Lyapunov method, we prove that the uniform ultimate boundedness of all signals in the closed-loop system is guaranteed. Finally, we provide simulations of a pendulum system and an oscillator system to validate the obtained optimal ETC strategy.
AbstractList This article studies an optimal event-triggered control (ETC) problem of nonlinear continuous-time systems subject to asymmetric control constraints. The present nonlinear plant differs from many studied systems in that its equilibrium point is nonzero. First, we introduce a discounted cost for such a system in order to obtain the optimal ETC without making coordinate transformations. Then, we present an event-triggered Hamilton-Jacobi-Bellman equation (ET-HJBE) arising in the discounted-cost constrained optimal ETC problem. After that, we propose an event-triggering condition guaranteeing a positive lower bound for the minimal intersample time. To solve the ET-HJBE, we construct a critic network under the framework of adaptive critic learning. The critic network weight vector is tuned through a modified gradient descent method, which simultaneously uses historical and instantaneous state data. By employing the Lyapunov method, we prove that the uniform ultimate boundedness of all signals in the closed-loop system is guaranteed. Finally, we provide simulations of a pendulum system and an oscillator system to validate the obtained optimal ETC strategy.This article studies an optimal event-triggered control (ETC) problem of nonlinear continuous-time systems subject to asymmetric control constraints. The present nonlinear plant differs from many studied systems in that its equilibrium point is nonzero. First, we introduce a discounted cost for such a system in order to obtain the optimal ETC without making coordinate transformations. Then, we present an event-triggered Hamilton-Jacobi-Bellman equation (ET-HJBE) arising in the discounted-cost constrained optimal ETC problem. After that, we propose an event-triggering condition guaranteeing a positive lower bound for the minimal intersample time. To solve the ET-HJBE, we construct a critic network under the framework of adaptive critic learning. The critic network weight vector is tuned through a modified gradient descent method, which simultaneously uses historical and instantaneous state data. By employing the Lyapunov method, we prove that the uniform ultimate boundedness of all signals in the closed-loop system is guaranteed. Finally, we provide simulations of a pendulum system and an oscillator system to validate the obtained optimal ETC strategy.
This article studies an optimal event-triggered control (ETC) problem of nonlinear continuous-time systems subject to asymmetric control constraints. The present nonlinear plant differs from many studied systems in that its equilibrium point is nonzero. First, we introduce a discounted cost for such a system in order to obtain the optimal ETC without making coordinate transformations. Then, we present an event-triggered Hamilton-Jacobi-Bellman equation (ET-HJBE) arising in the discounted-cost constrained optimal ETC problem. After that, we propose an event-triggering condition guaranteeing a positive lower bound for the minimal intersample time. To solve the ET-HJBE, we construct a critic network under the framework of adaptive critic learning. The critic network weight vector is tuned through a modified gradient descent method, which simultaneously uses historical and instantaneous state data. By employing the Lyapunov method, we prove that the uniform ultimate boundedness of all signals in the closed-loop system is guaranteed. Finally, we provide simulations of a pendulum system and an oscillator system to validate the obtained optimal ETC strategy.
Author Wei, Qinglai
Yang, Xiong
Author_xml – sequence: 1
  givenname: Xiong
  orcidid: 0000-0002-0128-3036
  surname: Yang
  fullname: Yang, Xiong
  email: xiong.yang@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Qinglai
  orcidid: 0000-0001-7002-9800
  surname: Wei
  fullname: Wei, Qinglai
  email: qinglai.wei@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32167914$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1OGzEUhS0EAgq8AEhopG7YTOp_zyxRCi1SBAuC6KayPDN3gtHEDrYHqW9fh6RZsKg3tq6_Y997zhe077wDhM4JnhCC62_z-_vZ44Riiie0VlJVag8dUyJpSVlV7e_O6tcROovxFeclsZC8PkRHLF-qmvBj9Pu6M6tk36GYBptsW8zABGfdouh9KKbexRSMddAVDxlbmqG4eQeXynmwiwWEXM9MCn4onm16Kb7b2PrRpY96TKfooDdDhLPtfoKebm_m05_l7OHH3fR6VrZMkFQKDpL0Dca876BRrMEtUYRiaURDlSSqIwxq0wgllFKCizwhAFedNACdEuwEXW3eXQX_NkJMepkbgWEwDvwYdbZBMSarmmf06yf01Y_B5e405UrUEnPCMnW5pcZmCZ1ehTx7-KP_GZcBugHa4GMM0O8QgvU6IP0RkF4HpLcBZVH1SdTaZJJdO2js8H_pxUZqAWD3V40ZZZyzv0-TnHo
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s11071_024_09778_3
crossref_primary_10_1007_s11424_022_1146_0
crossref_primary_10_1109_TASE_2023_3299275
crossref_primary_10_1109_TCSI_2022_3206370
crossref_primary_10_1002_rnc_6709
crossref_primary_10_1109_TNNLS_2021_3094901
crossref_primary_10_1109_TSMC_2023_3326466
crossref_primary_10_1016_j_neucom_2023_127013
crossref_primary_10_1109_TCYB_2022_3196003
crossref_primary_10_1109_TCYB_2025_3530951
crossref_primary_10_1109_TNNLS_2021_3137524
crossref_primary_10_1016_j_jfranklin_2022_12_021
crossref_primary_10_1016_j_neunet_2024_106413
crossref_primary_10_1016_j_isatra_2024_09_011
crossref_primary_10_1109_TNNLS_2022_3224029
crossref_primary_10_1109_TCYB_2024_3354945
crossref_primary_10_1109_TNNLS_2021_3115960
crossref_primary_10_1109_TNNLS_2023_3292154
crossref_primary_10_1002_asjc_3167
crossref_primary_10_1007_s11071_023_08862_4
crossref_primary_10_1109_TNNLS_2022_3166531
crossref_primary_10_1109_TNNLS_2022_3201521
crossref_primary_10_1109_TNNLS_2023_3335138
crossref_primary_10_3390_en13195069
crossref_primary_10_1007_s00521_022_07010_0
crossref_primary_10_1109_TASE_2024_3368438
crossref_primary_10_1109_TNNLS_2021_3104839
crossref_primary_10_1109_TNNLS_2022_3183020
crossref_primary_10_1080_00207721_2023_2209846
crossref_primary_10_1109_TNNLS_2023_3311927
crossref_primary_10_1007_s11071_021_06816_2
crossref_primary_10_1016_j_cnsns_2024_108308
crossref_primary_10_1007_s10489_023_05184_1
crossref_primary_10_1109_TNNLS_2023_3326867
crossref_primary_10_1002_oca_2782
crossref_primary_10_1109_TSMC_2022_3220028
crossref_primary_10_1007_s00521_021_06476_8
crossref_primary_10_1109_TSMC_2021_3130925
crossref_primary_10_1007_s11071_022_07513_4
crossref_primary_10_1109_TSMC_2023_3247888
crossref_primary_10_1109_TSMC_2024_3461781
crossref_primary_10_1016_j_jfranklin_2025_107519
crossref_primary_10_1002_rnc_7767
crossref_primary_10_1016_j_isatra_2025_01_045
crossref_primary_10_1016_j_ast_2023_108219
crossref_primary_10_1016_j_neucom_2023_126965
crossref_primary_10_1002_acs_3510
crossref_primary_10_1016_j_jai_2023_11_002
crossref_primary_10_1016_j_neucom_2021_10_046
crossref_primary_10_1109_TR_2024_3407090
crossref_primary_10_1109_TNNLS_2021_3105664
crossref_primary_10_1007_s12555_021_0674_z
crossref_primary_10_1109_TNNLS_2021_3138924
crossref_primary_10_1016_j_neucom_2024_128176
crossref_primary_10_1109_TSMC_2023_3257031
crossref_primary_10_1109_TNNLS_2022_3164727
crossref_primary_10_1109_TMRB_2025_3527695
crossref_primary_10_1002_rnc_6365
crossref_primary_10_1109_JAS_2023_123843
crossref_primary_10_1109_TFUZZ_2023_3294928
crossref_primary_10_1002_rnc_7099
crossref_primary_10_3934_math_20231046
Cites_doi 10.1109/TNNLS.2016.2614002
10.1109/TSMC.2018.2853089
10.1109/CDC.2010.5717148
10.1109/TNNLS.2017.2660070
10.1109/TAC.2007.904277
10.1109/TNNLS.2016.2593743
10.1109/JAS.2014.7004686
10.1109/TNNLS.2015.2464080
10.1016/j.automatica.2013.09.043
10.1016/j.automatica.2014.05.011
10.1017/CBO9780511810817
10.1109/TSMC.2019.2898370
10.1109/TSMC.2017.2737542
10.1109/ACC.1998.703328
10.1109/TNNLS.2017.2669099
10.1109/TNNLS.2016.2539366
10.1109/TII.2017.2771256
10.1109/TNNLS.2018.2817256
10.1109/TCYB.2017.2741342
10.1109/TNNLS.2016.2586303
10.1109/TNNLS.2015.2503980
10.1109/TIE.2016.2597763
10.1109/TSMC.2018.2889377
10.1109/TCYB.2018.2823199
10.1016/j.neucom.2019.02.034
10.1109/TCYB.2015.2417170
10.1109/TSMC.2017.2771516
10.1109/TNNLS.2016.2609500
10.1109/TNNLS.2018.2791419
10.1109/TSMC.2016.2642118
10.1109/TNNLS.2016.2541020
10.1109/CDC.2012.6425820
10.1109/TNNLS.2012.2227339
10.1109/TII.2018.2884214
10.1016/0893-6080(90)90005-6
10.1007/s00521-012-1249-y
10.1109/TASE.2014.2303139
10.1016/j.neunet.2018.05.005
10.1007/978-3-319-50815-3
10.1109/TNNLS.2017.2773458
10.1109/TNNLS.2015.2487972
10.1109/TCYB.2014.2319577
10.1109/TSMCB.2008.922019
10.1109/TNNLS.2017.2654324
10.1002/9780470182963
10.1109/TNNLS.2017.2693205
10.1109/TNNLS.2017.2751018
10.1002/9781119132677
10.1109/TIE.2018.2856198
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.2976787
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 104
ExternalDocumentID 32167914
10_1109_TNNLS_2020_2976787
9032344
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61973228; 61722312
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-54e61fb004fdeb73b0c171206a5b27617d13e9ab575777545388ee47d6aeed753
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 08:50:31 EDT 2025
Mon Jun 30 03:12:43 EDT 2025
Thu Jan 02 22:57:36 EST 2025
Tue Jul 01 00:27:33 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Aug 27 06:01:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-54e61fb004fdeb73b0c171206a5b27617d13e9ab575777545388ee47d6aeed753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7002-9800
0000-0002-0128-3036
PMID 32167914
PQID 2475960413
PQPubID 85436
PageCount 14
ParticipantIDs pubmed_primary_32167914
crossref_primary_10_1109_TNNLS_2020_2976787
ieee_primary_9032344
proquest_journals_2475960413
proquest_miscellaneous_2377336894
crossref_citationtrail_10_1109_TNNLS_2020_2976787
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Jan.
2021-1-00
2021-Jan
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref10
ref17
ref19
ref18
liu (ref1) 2008; 38
abu-khalaf (ref30) 2006
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
yang (ref16) 0
ref8
ref7
ref9
ref3
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref38
apostol (ref39) 1974
powell (ref4) 2007
liu (ref5) 2017
ref24
lewis (ref49) 1999
ref23
ref26
ref25
ref20
ref22
vamvoudakis (ref40) 2014; 1
ref21
khalil (ref54) 2002
ref28
ref27
ref29
vrabie (ref6) 2013
References_xml – year: 2013
  ident: ref6
  publication-title: Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles
– year: 2006
  ident: ref30
  publication-title: Nonlinear $\text H _ 2 / \text H _ \infty $ Constrained Feedback Control A Practical Design Approach Using Neural Networks
– ident: ref48
  doi: 10.1109/TNNLS.2016.2614002
– ident: ref44
  doi: 10.1109/TSMC.2018.2853089
– ident: ref47
  doi: 10.1109/CDC.2010.5717148
– ident: ref2
  doi: 10.1109/TNNLS.2017.2660070
– ident: ref55
  doi: 10.1109/TAC.2007.904277
– year: 0
  ident: ref16
  article-title: Decentralized event-triggered control for a class of nonlinear-interconnected systems using reinforcement learning
  publication-title: IEEE Trans Cybern
– ident: ref7
  doi: 10.1109/TNNLS.2016.2593743
– volume: 1
  start-page: 282
  year: 2014
  ident: ref40
  article-title: Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2014.7004686
– year: 2002
  ident: ref54
  publication-title: Nonlinear Systems
– ident: ref51
  doi: 10.1109/TNNLS.2015.2464080
– ident: ref31
  doi: 10.1016/j.automatica.2013.09.043
– ident: ref35
  doi: 10.1016/j.automatica.2014.05.011
– ident: ref50
  doi: 10.1017/CBO9780511810817
– ident: ref42
  doi: 10.1109/TSMC.2019.2898370
– ident: ref29
  doi: 10.1109/TSMC.2017.2737542
– ident: ref24
  doi: 10.1109/ACC.1998.703328
– ident: ref53
  doi: 10.1109/TNNLS.2017.2669099
– ident: ref11
  doi: 10.1109/TNNLS.2016.2539366
– ident: ref37
  doi: 10.1109/TII.2017.2771256
– ident: ref19
  doi: 10.1109/TNNLS.2018.2817256
– ident: ref15
  doi: 10.1109/TCYB.2017.2741342
– ident: ref12
  doi: 10.1109/TNNLS.2016.2586303
– ident: ref8
  doi: 10.1109/TNNLS.2015.2503980
– ident: ref45
  doi: 10.1109/TIE.2016.2597763
– ident: ref34
  doi: 10.1109/TSMC.2018.2889377
– ident: ref20
  doi: 10.1109/TCYB.2018.2823199
– ident: ref38
  doi: 10.1016/j.neucom.2019.02.034
– year: 1974
  ident: ref39
  publication-title: Mathematical Analysis
– ident: ref23
  doi: 10.1109/TCYB.2015.2417170
– ident: ref52
  doi: 10.1109/TSMC.2017.2771516
– ident: ref18
  doi: 10.1109/TNNLS.2016.2609500
– ident: ref41
  doi: 10.1109/TNNLS.2018.2791419
– ident: ref33
  doi: 10.1109/TSMC.2016.2642118
– ident: ref28
  doi: 10.1109/TNNLS.2016.2541020
– ident: ref43
  doi: 10.1109/CDC.2012.6425820
– ident: ref26
  doi: 10.1109/TNNLS.2012.2227339
– ident: ref22
  doi: 10.1109/TII.2018.2884214
– ident: ref46
  doi: 10.1016/0893-6080(90)90005-6
– ident: ref36
  doi: 10.1007/s00521-012-1249-y
– ident: ref25
  doi: 10.1109/TASE.2014.2303139
– ident: ref3
  doi: 10.1016/j.neunet.2018.05.005
– year: 2017
  ident: ref5
  publication-title: Adaptive Dynamic Programming With Applications in Optimal Control
  doi: 10.1007/978-3-319-50815-3
– ident: ref14
  doi: 10.1109/TNNLS.2017.2773458
– ident: ref32
  doi: 10.1109/TNNLS.2015.2487972
– ident: ref17
  doi: 10.1109/TCYB.2014.2319577
– volume: 38
  start-page: 988
  year: 2008
  ident: ref1
  article-title: Adaptive critic learning techniques for engine torque and air-fuel ratio control
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.922019
– ident: ref9
  doi: 10.1109/TNNLS.2017.2654324
– year: 2007
  ident: ref4
  publication-title: Approximate Dynamic Programming Solving the Curses of Dimensionality
  doi: 10.1002/9780470182963
– ident: ref13
  doi: 10.1109/TNNLS.2017.2693205
– ident: ref27
  doi: 10.1109/TNNLS.2017.2751018
– year: 1999
  ident: ref49
  publication-title: Neural Network Control of Robot Manipulators and Nonlinear Systems
– ident: ref10
  doi: 10.1002/9781119132677
– ident: ref21
  doi: 10.1109/TIE.2018.2856198
SSID ssj0000605649
Score 2.5848105
Snippet This article studies an optimal event-triggered control (ETC) problem of nonlinear continuous-time systems subject to asymmetric control constraints. The...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 91
SubjectTerms Adaptive control
Adaptive critic designs (ACDs)
adaptive critic learning (ACL)
adaptive dynamic programming (ADP)
Adaptive learning
Adaptive systems
constrained optimal control
Constraints
Continuous time systems
Coordinate transformations
Cost function
Event triggered control
event-triggered control (ETC)
Feedback control
Learning
Lower bounds
Nonlinear control
Nonlinear systems
Optimal control
Pendulums
reinforcement learning (RL)
Robustness
Title Adaptive Critic Learning for Constrained Optimal Event-Triggered Control With Discounted Cost
URI https://ieeexplore.ieee.org/document/9032344
https://www.ncbi.nlm.nih.gov/pubmed/32167914
https://www.proquest.com/docview/2475960413
https://www.proquest.com/docview/2377336894
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PaBeKFAeCwUZiRtk69iJsz5W0KpCdDmwFXtBkR-TUgG7FZu98OuZcR4SCBC3KBnbsWbG8409ngF4UUSUSEA1QyXLjCw-6ZzGmNmZl4bsYagiXxS-mJvzy-LtslzuwKvxLgwipuAznPJjOsuP67DlrbJjK7XSRbELu-S4dXe1xv0USbjcJLSreEClq-VwR0ba48V8_u4DeYNKThUZYJLSfbilFZ9B5MUvJinVWPk73Exm5-wALoYf7qJNvky3rZ-GH7_lcvzfGd2B2z3-FCedwNyFHVzdg4OhtoPoVf0QPp1Ed8NLoeiKIYg-EeuVIJQruMxnKi6BUbwnsm_U5SlHTmYL8vavuP4n03AQvPh43X4Wb643qSpFer9p78Pl2eni9XnWl2LIgi7zNisLNHnDKt5E9JX2MuRVrqRxpVcVoaCYa7TOE_irOKceLaMzxKKKxpERJpfoAeyt1it8BMI7ahMLR-ChKRoTrI-ybIz1wQXbODeBfOBGHfo85Tyjr3XyV6StEzNrZmbdM3MCL8c2N12Wjn9SHzInRsqeCRM4Gphe94q8qRXnQzSSTP0Eno-fSQX5XMWtcL0lGl1xUsmZpS4edsIy9j3I2OM_j_kE9hUHyaQ9nSPYa79v8SmhnNY_S-L9E7jL9fI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkEvFCiFhQJG4gbZOnbirI9VH1pgdzmwFXtBkV8pFbBbsdkLv54Z5yGBWsQtSsZ2rJnxfLbnAfA684EHBKpJEDxP0OKjzsngEz2yXKE9dIWnQOHpTI3Ps_eLfLEFb_tYmBBCdD4LQ3qMd_l-5TZ0VHaouRQyy27B7ZyCcZtorf5EhSMyVxHvChpSyGLRRclwfTifzSafcD8o-FCgCUY53YE7UtAtRJr9YZRilZWbAWc0PGe7MO1-ufE3-Tbc1Hbofv2VzfF_53Qf7rUIlB01IvMAtsLyIex21R1Yq-x78OXImytaDFlTDoG1qVgvGOJcRoU-Y3mJ4NlHJPuBXZ6S72Qyx_3-BVUAJRpyg2efL-uv7ORyHetSxPfr-hGcn53Oj8dJW4whcTJP6yTPgkorUvLKB1tIy11apIIrk1tRIA7yqQzaWIR_BWXVw4V0FEJWeGXQDOOmaB-2l6tleALMGmzjM4Pwocoq5bT1PK-Uts44XRkzgLTjRunaTOU0o-9l3LFwXUZmlsTMsmXmAN70ba6aPB3_pN4jTvSULRMGcNAxvWxVeV0KyoioOBr7AbzqP6MS0s2KWYbVBmlkQWklRxq7eNwIS993J2NPrx_zJdwdz6eTcvJu9uEZ7AhymYknPAewXf_chOeIeWr7Ior6b6-9-To
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Critic+Learning+for+Constrained+Optimal+Event-Triggered+Control+With+Discounted+Cost&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Yang%2C+Xiong&rft.au=Wei%2C+Qinglai&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=32&rft.issue=1&rft.spage=91&rft_id=info:doi/10.1109%2FTNNLS.2020.2976787&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon