Adaptive Critic Learning for Constrained Optimal Event-Triggered Control With Discounted Cost

This article studies an optimal event-triggered control (ETC) problem of nonlinear continuous-time systems subject to asymmetric control constraints. The present nonlinear plant differs from many studied systems in that its equilibrium point is nonzero. First, we introduce a discounted cost for such...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 1; pp. 91 - 104
Main Authors Yang, Xiong, Wei, Qinglai
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article studies an optimal event-triggered control (ETC) problem of nonlinear continuous-time systems subject to asymmetric control constraints. The present nonlinear plant differs from many studied systems in that its equilibrium point is nonzero. First, we introduce a discounted cost for such a system in order to obtain the optimal ETC without making coordinate transformations. Then, we present an event-triggered Hamilton-Jacobi-Bellman equation (ET-HJBE) arising in the discounted-cost constrained optimal ETC problem. After that, we propose an event-triggering condition guaranteeing a positive lower bound for the minimal intersample time. To solve the ET-HJBE, we construct a critic network under the framework of adaptive critic learning. The critic network weight vector is tuned through a modified gradient descent method, which simultaneously uses historical and instantaneous state data. By employing the Lyapunov method, we prove that the uniform ultimate boundedness of all signals in the closed-loop system is guaranteed. Finally, we provide simulations of a pendulum system and an oscillator system to validate the obtained optimal ETC strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2020.2976787